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Exercise 1. Heteroskedasticity (1)

a) Use the data in hpricel.cswy obtain the heteroskedasticity-robust standenat®and
homoskedastic-only standard errors for equation:

price = f; + polotsize +p3sqrft + f4bdrms + u Discuss any important difference with
the usual homoskedasticity-only standard errors.

b) Repeat part a) fdog(price) =1 + polog(lotsize) +p3log(sqrft) +psbdrms + u

c) What does this example suggest about heteroskeithasind the transformation used
for the dependent variable?

d) Apply the full White test for heteroskedasticitygart b). Which variables does it
apply? Using the chi-squared form of the statistitain the p-value. What do you
conclude?

Answer:

a)
» Imla<-Im(price~lotsize + sgrft + bdrms, data=house)
» summary(Imla)
» shcem(lmla)

The estimated equation with both sets of standaise(heteroskedasticity-robust standard
errors in brackets) is:

price_hat =-21.77 + 0.002@8ize + 0.123 sqrft + 13.85 bdrms

(29.48) (0.00064) (0.013)  (9.01)
[36.28] [0.0012] [0.017] [8.28]
N=88 280.672

The robust standard error on lotsize is almost éwas large as the homoskedastic-only
standard error, making lotsize much less signitiqame t-statistic falls from about 3.22 to
about 1.65). The t-statistic on sqrft also fallgt ib is still very significant. The variable bdrms
actually becomes somewhat more significant butilifosrely significant. The most important
change is in the significance of lotsize.

b)
» Imlb <- Im(Iprice ~llotsize + Isqrft + bdrms, data=house)
» summary(Imlb); shcem(Imlb)

For the log-log model:
log(price_hat) =-1.30 + 0.0168(lotsize) + 0.700 log(sqrft) + 0.037 bdrms

(0.65) (0.038) @3) (0.028)
[0.76] [0.041] [O]L [0.030]
N=88 280.643

Here, the heteroscedasticity-robust standard eisomalways slightly greater than the
corresponding usual standard error, but the diffiege are relatively small. In particular,
log(lotsize) and log(sqrft) still have very largstatistics, and the t-statistic on bdrms is not
significant at the 5% level against a one-sideeradtive using either standard error.

¢) Using the logarithmic transformation of the depearideariable often mitigates, if not
entirely eliminates, heteroskedasticity. (see Widige section 6.2, Dougherty in chapter 7,
section about non-linear models). This is certathly case here, as no important conclusions
in the model for log(price) depend on the choicstahdard error. (We have also transformed
two of the independent variables to make the mofigie constant elasticity variety in lotsize
and sqrft).
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d) After estimating the equation in part b) we obtsguared OLS residuals. The full White-
test is based on the’Rrom the auxiliary regression (with an intercept) log(lotsize),
log(sqrft), bdrms, loYlotsize), log(sqrft), bdrm$, log(lotsize)-log(sqrft), log(lotsize)-bdrms,
log(sqrft)-bdrms

> house$imilb.sgres<- Imlb$residuals®2

» Imlb.whitetest <- Im(Imlb.sqres~ llotsize*Isgrft*bdrms- llotsize:Isgrft:bdrms
+ I(llotsize*2) + I (Isgrft”2) + 1 (bdrms* 2), data=house); shcem(imlb.white.test)

» T <-summary(Imlb.whitetest)$r.squared * nrow(house)

» pchisg(g=T, df=9, lower .tail=F)

With 88 observations, the ARersion of the White statistic is 9.55, and tisistie outcome of
an (approximately) chi-squared random variable WitHegrees of freedom. The p-value is
about 0.385, which provides little evidence agaihsthomoskedasticity assumption.

Exercise 2. Heteroskedasticity (2)
Use data training.csv

a) Consider the simple regression mobigj(scrap¥f; + B grant + u, wherescrapis
the firm scrap rate, andrant is a dummy variable indicating whether a firm
received a job training grant. Can you think of soreasons why the unobserved
factors inu might be correlated igrant?

b) Estimate a simple regression model. Does receivingjob-training grant
significantly lower a firm’s scrap rate?

c) Now, add as an a explanatory varialolg(scrap_1)this variable is the scrap rate of
the previous year). How does this change the estuhaffect ofgrant? Is it
statistically significant at the 5% level?

d) Test the null hypothesis that the parametedagfscrap_1)is 1 against the two-
sided alternative. Report the p-value for the test.

e) Repeat parts ¢) and d) using heteroscedasticitystostandard errors, and briefly
discuss any notable differences.

Answer:

a) If the grants were awarded to firms based on @rrworker characteristics, grant could
easily be correlated with factors that affect pitlity. In the simple regression model
presented, these are contained.in

b) The simple regression estimates are obtained by
» Im2b <- Im(log(scrap) ~ grant, data=training); summary(Im2b)
The coefficient on grant is positive, but not sttally different from O.
¢) When we add log(scrap_1) to the equation, we nbtai
» Im2c <- Im(log(scrap) ~ grant + log(scrap_1), data=training); summary(Im2c)

At the 5%-level, the coefficient pertaining to granot significant. (At the 10% it is
significant but negative).

d) Test the linear hypothesis:
» linearHypothesis(model=Im2c, " log(scrap_1) =1")
We strongly reject HO.
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€) Heteroscedasticity-consistent coefficient variaooceariance matrix for model Im2c yields
the summary

» shcem(lm2c)

> linearHypothesis(model=Im2c, " log(scrap_1) = 1", white.adjust=T)
Note that the standard errors for the variable tggamot change at all. Its coefficient
therefore remains insignificant at 5%.

Linear hypothesis-test and regression summary ubmyVhite-adjusted coefficient variance-
covariance matrix show that the standard errottfercoefficient pertaining to scrap_1 is far
higher now. P-values are higher as a consequentarad the linear hypothesis is no longer
significant at 5%-level.

Exercise 3. Autocorreation

Use _bonds.csut contains data on returns for AAA bonds aneéiest rates from US Treasury
Bills from January, 1950 to December, 1999.

» bonds<-read.csv(" bonds.csv", header=T)
» str(bonds)

a) Regress changes in AAA bond returns (daaa) on @&stry Bill interest rates
(dus3mt). Plot the residuals. Are the residualsitigted evenly across time?

b) Investigate serial autocorrelation in residualse the Breusch-Godfrey Serial Correlation

LM Test and the Durbin-Watson test for auto-comtesleerrors.
Answer:
a) Regress changes in AAA bond returns on US TredBilirinterest rates.
» Im3a<- Im(daaa ~ dus3mt, data=bond); shccm(Im3a)

To investigate serial autocorrelation in residuateate and examine the residuals for this
analysis, showing the residuals over time. To @& first generate the variable to use to
define the date:

» bond$paneldate <- as.year mon(bond$paneldate, format="%Ym%m")
Then plot the residuals against this time-variable:

e<-Im3a%res
plot(e ~ bond$paneldate, type="1")

Note the following pattern in the residual serigigh volatility (variance) is followed by high
volatility and vice versa. Probably the residuats @rrelated.

b) Let's compute the correlation of the residualdwtite residuals in the previous periods
(autocorrelation). You can do this in the followiwgy

N <- length(e)

el <- ¢(NA, g1:(N-1)])

€2 <- ¢(NA, NA, €1:(N-2)])

plot(e ~€el)

cor (e, €1, use="complete")

abline(a=0, b=0.2761491, col="red", lwd=2)

As you can see the residuals in period t are ateeélwith the residuals in the previous
period. In fact the correlation is +0.278.
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Interpretationthepositivecorrelation indicates that if the model under-feedin one period
it does the same the following time. This is beeah®e adjustment to equilibrium is not
achieved automatically, and therefore errors dtevied by errors of the same sign.

Let’s test formally for serial correlation:
Breusch-Godfrey Serial Correlation LM Test

Note that if the R-square is high in the next regien this means that the residuals in period t
depends in a meaningful way of the residuals iniptes periods and/or the dependant
variable, and therefore we can reject the nulleserial correlation.

» Im3bBG <- Im(bond$daaa ~ bond$dus3mt + el + e2); shccm(Im3bBG)

As you can see the residuals are correlated withebiduals in the previous periods. The
formal test indicates that we can reject the ngtidthesis that the residuals are not correlated.
Ways of dealing with autocorrelation in residuall e analysed in the next term.

Durbin-Watson Test for Autocorrelated Errors

» 2durbinWatsonT est
» durbinWatsonTest(Im4, max.lag=1, alter native=" positive")

This command computes the Durbin-Watson statistic test for positive
(alternative="positive”), first-order (max.lag=1¢msal correlation in the disturbances when all
the regressors are strictly exogenous. durbinWasin values: if there were no
autocorrelation, the value of the Durbin-Watsonistia would be around 2, and the closer the
value is to O or to 4, the greater the autoconiat

In our case the lower and upper bound critical @alat 5% are 1.86257 and 1.86925
respectively Iittp://www.stanford.edu/~clint/bench/dw05d.htmith T=600 and K=2). If the
test statistic is below the lower bound criticallwea this is evidence of positive
autocorrelation. If it is between the lower and empound critical values, the test is
inconclusive. If it is above the upper bound caltigalue, this is evidence of the error terms
not being positively correlated. To test for negatautocorrelation, follow the same logic but
use option alternative="negative” with (4 — DW s&#¢t) as your test statistic.

In our case, the test statistic of 1.45 is lowantthe lower bound critical value and so we can
conclude that the model does suffer from autocati@i in the residuals.

Exercise 4. Non-linearity in variables

In linear regression, in general the relationshgiwleen the response variable and the
predictors is linear. If this assumption is vieldt trying to fit a straight line to data that does
not follow a straight line will be a mis-specifiegat, and furthermore, may lead to violate the
assumption of disturbances being iid.

We estimatey;, = fp + f1-% + ... + S X + &, to try for non-linearities, we could do:

Vi = ot SrXe ¥ e+ Bk F 7 1ot o F G F X F . F g

A test of non-linearity would consist just on tegtthat each of the gammas is equal to 0.

Open the file nysevolume.csind examine the data.

a. Fit a regression model @blumeont (a time trend)

b. Examine the residuals. Assess the linearity oféhegtion between volume and the
time trend.

c. Generate a log transformation of the variable v@uRun the regression in a. with
this new variable. What happens now with the res?lu
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d. Now run the following model (and analyse againrésduals):
log(volume) =Bo + B1-t + o€ + &i.

Answer:

a)
» Imda<- Im(volume ~ t, data=nyse); shccm(lm4a)

b) To produce four summary-plots of the fitted made2 rows and 2 columns:
» par(mfrow=c(2,2))
> plot(iIm4a)

Clearly it is impossible to try to fit a straiglmé if the original series is a curve. Clearly the
residuals are not random values around 0. A saalttéof volume and t will show us
something similar.

» plot(volume~t, data=nyse)
» abling(lIm4a, col="red", lwd=2)
c)
Im4c <- Im(log(volume) ~ t, data=nyse); shccm(Im4c)
par (mfrow=c(2,2))
plot(Im4c)
The residuals show that we still have problems.
d) Now run:
» Im4d <- Im(log(volume) ~t + | (1" 2), data=nyse); shccm(Im4d)

Now it is much better. Even though we can hardiytbat the residuals are completely
random. But we will leave the exercise h€Mote: if you include additional powers byou
will get better and better fit).

Exercise 5. Normality

Use bonds.cswWormality of residuals is required for valid hypesis testing, The normality
assumption assures that the p-values for theg-tasl F-test will be valid. Normality is not
required in order to obtain unbiased estimateb®fé¢gression coefficients.

a) Regress changes in AAA bond returns (daaa) on @&stiry Bill interest rates
(dus3mt). Obtain the histogram of the residuals.
b) Analyse the Jarque-Bera test of normality results.

Answer:

a)
» Imba <- Im(daaa ~ dus3mt, data=bond); shccm(Im5a)
> hist(Im5a$res, breaks=30)

Note that the histogram of the residuals has d 4elpe” (as the normal distribution has).

» library(timeDate)
> skewness(Im5a$res, method="moment")
» kurtosis(Im5a$res, method="moment")

But note that a normal distribution has Kurtosi3 and Skewness = 0, and here we have
Kurtosis = 8. This means that too many residuascancentrated very close or around zero.
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b) Normal distribution has Kurtosis = 3 and Skewne$s The Jarque-Bera is a test statistic
for testing whether the series is normally distidol The test statistic measures the
difference of the skewness (S) and kurtosis (Khefseries with those from the normal

distribution.
T —k (K — 3)2
_ 2
JB = _6 (S + —4 >

» krepresents the number of estimated coefficients

« JBis distributed as a? with 2 degrees of freedom

« If IB > x¢45(2), which is at 0.05 significance, we reject thdl hypothesis of a
normal distribution

The test statistic is obtained by

> library(tseries)
> jarque.bera.test(Imb5a$res)

The null hypothesis is that the residual serig®isnal. Because the p-value < 0.05 we reject
the null of normality and therefore the residualeseis not normal. We have to do something
to solve this problem, but this is out of the scopthis term. Next term you learn some ways
of solving this.

Exercise 6: Outliers
Unusual and Influential data

A single observation that is substantially diffaréom all other observations can make a
large difference in the results of your regressinalysis. If a single observation (or small
group of observations) substantially changes yesults, you would want to know about this
and investigate further. There are three waysahaibservation can be unusual.

Outliers: In linear regression, an outlier is an observatth large residual. In other words,
it is an observation whose dependent-variable vauenusual given its values on the
predictor variables. An outlier may indicate a ségeculiarity or may indicate a data entry
error or other problem.

L everage: An observation with an extreme value on a predicariable is called a point with
high leverage. Leverage is a measure of how fandependent variableleviates from its
mean. These leverage points can have an effetteoastimate of regression coefficients.

Influence: An observation is said to be influential if renmoy the observation substantially
changes the estimate of coefficients. Influence lmarthought of as the product of leverage
and outlierness.

How can we identify outlying observations? Let'skdaat an example dataset calledme.
Use _crime.csvThe variables that we will work with are violetrimes per 100,000 people
(crime), the percent of the population living in metrdfeot areas fctmetro), percent of
population living under poverty linepgverty), and percent of population that are single
parents gingle). (This dataset appears Btatistical Methods for Social Sciences, Third
Edition by Alan Agresti and Barbara Finlay).

a. A regression model forcrime might have pctmetro, poverty, and single as
independent variables. Run this regression andipéotesiduals.

b. ldentify what is the observation that is an outlier
c. Try to solve this problem adding to the regressinnmpulse dummy variable.
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Answer:

a)
Im6a <- Im(crime ~ pctmetro + poverty + single, data=crime); shccm(lm6a)
par (mfrow=c(2,2))
plot(Im6a)

Observations number 9, 25 and 51 seem to be autReautomatically identifies them in the
plot, because the absolute values of these residdiab, 523 and 412) are larger than 2 times
the standard error of the regression (182.1).

b) We can examine the studentized residuals astarfeans for identifying outliers. Use the
rstudent command to generate studentized residuals. Staddnesiduals are a type of
standardized residual that can be used to ideuoiifiyers.

> crime$rstudent <- rstudent(Im6a)

Sort the data on the residuals and show the 1@daesnd 10 smallest residuals along with the
state id and state name.

crime <- crimeforder (crime$rstudent), |
head(crime)
tail(crime)

We should pay attention to studentized residuads ¢xceed +2 or -2, and get even more
concerned about residuals that exceed +2.5 or a@db even yet more concerned about
residuals that exceed +3 or -3. These results shawDC and MS are the most worrisome
observations followed by FL.

c) Generate an indicator variable for the outlierdc

> crime$DC <- ifelse(crime$state=="dc", 1, 0)
and include this indicator variable in the originediression:

» Im6c <- Im(crime ~ pctmetro + poverty + single + DC, data=crime); shccm(Im6c)
Note that this is equivalent to dropping the outlie

» Im6c <- Im(crime ~ pctmetro + poverty + single, data=subset(crime, state!="dc"))
; shcem(Ime6c)

Note that the variable DC is significant. Moreovaste how estimated parameters and the
standard errors change (with respect to our fgstation). This is why it is very important to
“neutralise” the effect of outliers.

The coefficient fosingle dropped from 132.4 to 89.4. Graphical assessmehifesult:

plot(crime ~ single, data=crime, col="white"); text(x=crime$single,
y=crime$crime, labels=crimeS$state)

m.pctmetro <- mean(crime$pctmetro); m.poverty <- mean(crime$poverty)
r.single <- seq(min(crime$single),max(crime$single),.1)

myReg <- function(x, model){
coef(model)% * % c(1, m.pctmetro, m.poverty, X)
}

y <- sapply(r.single, myReg, model=Im6a); lines(x=range.single, y=y, col="red")
y <- sapply(r.single, myReg, model=Im6c); lines(x=range.single, y=y, col="blue")
legend(" topleft”, legend=c(" with DC" " without DC"), fill=c(" red" ," blue"))



