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Functional forms of regression - logarithms 

Model 

  

Dependent 

variable 

Independent 

variable 

Algebraic 

interpretation of β 

Conceptual interpretation of b 

level-level 

  

Y X Y = β X A constant level change after  

change in one unit of X 

Semi-log 

log-level 

log(Y) X % Y = (100·β1 X A constant % change in Y after  

change in one unit of X 

Double-log 
log-log 

log(Y) log (X) % Y =β% X A constant  % change in Y after  
change of X in 1% 

  

Note: log (A) – log (B) = log (A/B) and this is approximately equal to the percent increase 

from B to A divided by 100, if the increase is low. Imagine for instance A=105, B=100. Do: 

 log(105/100) 

very close to 5%. Now A =110,  

 log(110/100) 

there is already an important difference with 10%. Finally, let A be 130. 

 log(130/100) 

Now it is quite different. Differences in logs are used as proxies for percent increases between 

variables, but sometimes these approximations are not that exact. 

Examples: 

Level-level: Example: exercise 3 in session 2. If height changes by 1 unit (one inch, as it is 

measured in inches), how much does weight increase – in pounds? 

Semi-log (or Log-level): In this case an increase of X in one unit always leads to the same 

increment in percentage in Y. For instance: log(wage) = β0 + β1·education + u. 

In this case, 100·β1 captures the percentage by which wages change with a change of one unit 

(say one more year) in education. Concept: “rate of return” to education.  

Note that in this model the assumption is that the rate of return is identical for all the 

education levels. A uniform rate of return is estimated for any additional year in school or any 

additional year in college.  

What would the β1 capture in the following model? log(profit level) = β0 + β1·capital + u 

Double-log or Log-log: In this case β1 captures the percentage change in variable Y after a 

change of X by 1%.  Due to an increase (or decrease) of one per cent in X, by how many 

percentage points will Y change? This is the concept of elasticity.  

Take, for instance: log(supply of labour) = β0 + β1·log(wages) + u 

This is the elasticity of labour supply. 

log(demand of cars) = β0 + β1·log(car prices) + β2·log(household income) + u 

Now β1 captures the price elasticity of the demand for cars and β2 collects the income 

elasticity of the demand for cars. 

 

 

Exercise 1. Non-linear models. Production function. Multiple hypotheses.  

Dataset: production data for the year 1994; n=26; US firms in the sector of primary metal  

industries. (Gray, NBER, Technical Working Paper 205).  
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For each firm, values are given of production (y, value added in millions of dollars), labour 

(L, total payroll in millions of dollars), and capital (K, capital stock in millions of 1987 

dollars).  

a) Load usmetal.txt with read.table (R programming, page 1).  

b) Generate new variables as logs of the old variables. Inspect the variables. (summary 

and graph with histogram and scatter-plot) 

c) Using a double log specification, estimate a production function. (This is the Cobb-

Douglas production function). Comment on the coefficients.  

d) Test the hypothesis that the coefficients are equal. 

e) [Optional] Test the hypothesis of constant returns to scale (CRS).  

f) Impose the restriction and re-estimate. 

Help for c): Cobb-Douglas functions 

The Cobb-Douglas function is defined as follows: 

Yi = β1 · K
β2

i
 · L

β3

i
  

therefore: 

log(Yi) = β1 + β2·log(Ki) + β3·log(Li)
 1
 

d) linearHypothesis(model=lm1c, "lK=lL"). The hypothesis is rejected at the 5% level. 

e) In order to impose the restriction take into account:   H0: β2 + β3 = 1 

Explanation: CRS is such that: f(λ·K, λ·L) = λ·f(K, L). Then: 

Yi = β1 · Ki β2 · Li β3 

therefore, if CRS, 

β1·(λKi)
β2

 
 · λL

β3

i
  = λ·β1·K

β2

i
 ·L

β3

i
  

then, 

λ
β2+β3

 
 ·β1·(Ki)

β2

 
 ·(Li)

β3

 
  = λ·β1·K

β2

i
 ·L

β3

i
  

and these expressions are equivalent if: λ
β2+β3

 
 = λ or, equivalently: β2+β3 = 1.

 
 linearHypothesis(model=lm1c, "lk+ll=1") 

f) To impose CRS first note that: β2+β3 = 1; so: β2 = 1- β3.  

   log(Yi) = β1 + β2·log(Ki) + β3·log(Li) + ui 

   log(Yi) = β1 + (1-β3)·log(Ki) + β3·log(Li) + ui 

log(Yi) – log(Ki) = β1 + β3·[log(Li) - log(Ki)] + ui 

In R there is no need to transform the variables. To subtract log(K) from log(Y) on the left 

hand side of the formula, we use R‟s offset command. To inhibit misinterpretation of the 

subtraction lL – lK, we use the function I(). 

 lm1f <- lm(lY ~ I(lL - lK), offset=lK, data=metal) 

 anova(lm1c, lm1f) 

The final F-test, using the anova-function, is equivalent to the linear hypothesis of CRS and 

confirms that the models lm1c and lm1f are almost equal. 

                                                
1 Remember:  ln(AB) = ln(A) + ln(B);   log(Aα ) = α · ln(A) 
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Exercise 2. Model selection 

How do growing weather and a wine‟s age influence a Bordeaux wine‟s price? Data: 

wineweather1.csv. It contains average 1989 prices for Bordeaux wines for the vintages from 

1951 to 1989, together with data on conditions when each vintage was being grown. Forget 

about typical problems with time series variables. Variables in the file: 

logprice: natural log of the price of Bordeaux wines relative to the price of the 1961 vintage. 

degrees: average temperature in the growing season. 

hrain: rainfall in the harvest season. 

wrain: winter rainfall 

time_sv: time from 1989 back to the wine‟s vintage year. 

a) Regress log(price) on growing-season temperatures, harvest-season rainfall, off-season 

rainfall, and the age of a wine. Use the R
2
 to compute the F-statistic to test the null 

hypothesis that none of the variables in the regression matter for the price of wine. 

b) Test at the 5% significance level the null hypothesis that the intercept changes in the 

decades after the 50s with respect to the corresponding one in the 50s. 

c) The regression used for b) should EITHER include a dummy variable for each decade 

and no constant OR a dummy for each of three decades and a constant. Explain. 

d) Drop time_sv. Include lagged values (up to 2) for the average temperature in the 

growing season. Select the best model with BIC and AIC criteria. 

 wine <- read.csv("wineweather1.csv", header=T) 

a)  

The sample is small, we have to rely on assumptions of homoscedasticity and normality of the 

disturbances. 

 lm2a <- lm(logprice ~ degrees + hrain + wrain + time_sv, data=wine) 

R performs the F-test for you and reports the test statistic and p-value of the test in the last  

line on the regression output. If you wish to perform the test manually, the instructions are  

below: 

Remember: F = 
R

2
/(k-1)

(1-R
2
)/(n-k)

  

 qf( p=0.95, df1=4, df2=22 ) # for the critical value. 

 paste("R^2 is", summary(lm2a)$r.squared)s 

 paste("df residuals = n-k =", 27-5) 

 paste("Restrictions=k–1=df of the model=", 5-1) 

there are 2 restrictions. 

 paste("F-stat =", summary(lm2a)$r.squared / (5-1)  

  / ((1- summary(lm2a)$r.squared) / (27-5)) 

or simply: 

 summary(lm2a)$fstatistic 

F=[ R
2
/(k-1)]/ [(1-R

2
)/(n-k)]=26.38>2.81 from an F(4,22) at 5% level of significance. Reject 

null that none of the variables matter for the price of wine. 

b) 

            wine$vint 
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            wine$sixties <- ifelse(wine$vint>1959 & wine$vint<1970, 1, 0) 

            wine$seventies <- ifelse(wine$vint>1969 & wine$vint<1980, 1, 0) 

            wine$eighties <- ifelse(wine$vint>1979, 1, 0) 

            lm2b <- lm(logprice ~ degrees + hrain + wrain + sixties + seventies + eighties, 

 data=wine) 

            linearHypothesis(sixties seventies eighties) 

We reject the null that all three coefficients are equal to 0. Since each of them represents the 

difference with the default categories (observations picked up in the 50s) we conclude that at 

least in one of the decades there was a significant difference with the intercept in the 50s. 

c) The regression used for b) should EITHER include a dummy variable for each decade and 

no constant OR a dummy for each of three decades and a constant. To see this, realize that the 

intercept is obtained by adding up all dummies. This leads to problems of perfect 

multicollinearity in the model. R will, by default, drop one dummy and the coefficients of the 

remaining dummies are interpreted with respect to the dropped dummy (referred to as the 

reference category). 

d) 

Sort data by vintage if it isn‟t already 

 wine <- wine[order(wine$vint, decreasing=T), ] 

 wine$deglag1 <- c(wine$degrees[-1], NA) 

 wine$deglag2 <- c(wine$degrees[-c(1,2)], rep(NA,2)) 

Type wine[c(1:10, 30:38), ] to see what the above command does. 

            lm2di <- lm(logprice ~ degrees + hrain + wrain + deglag1 + deglag2, data=wine) 

            lm2dii <- lm(logprice ~ degrees + hrain + wrain + deglag1, data=wine) 

            lm2diii <- lm(logprice ~ degrees + hrain + wrain, data=wine)  

            myIC <- function(model){ 

               print(model$call) 

               print( paste("AIC:", AIC(model, k=2) ))     # Akaike's An IC 

               print( paste("BIC:", AIC(model, k=log(length(model$res))) )) # Bayes IC 

               print( paste("R2 :", summary(model)$adj.r.squared ))  # adjusted R^2 

             } 

             myIC(lm2di); myIC(lm2dii); myIC(lm2diii) 

R2-adjusted, BIC and AIC give different results. BIC is consistent, but we have a small 

sample so there‟s no clear cut solution for this problem. With the adjusted R2 we would  

have picked the model with no lags. With AIC we would have selected the model with  

2 lags (the one with lowest AIC), with BIC the model without any lag.  

 

                                 

 Exercise 3. Heteroskedasticity. 

a) Use the data in hprice1.csv to obtain the heteroskedasticity-robust standard errors and 

homoskedastic-only standard errors for equation:  
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price = β1 + β2lotsize + β3sqrft + β4bdrms + u. Discuss any important difference with 

the usual homoskedasticity-only standard errors. 

b) Repeat part a) for log(price) = β1 + β2log(lotsize) + β3log(sqrft) + β4bdrms + u  

c) What does this example suggest about heteroskedasticity and the transformation used 

for the dependent variable? 

d) Apply the full White test for heteroskedasticity to part b). Which variables does it 

apply? Using the chi-squared form of the statistic, obtain the p-value. What do you 

conclude? 

a) 

 lm3a <- lm(price ~ lotsize + sqrft + bdrms, data=house) 

 summary(lm3a) 

 shccm(lm3a) 

The estimated equation with both sets of standard errors (heteroskedasticity-robust standard 

errors in brackets) is:  

                       price_hat = -21.77 + 0.00207 lotsize + 0.123 sqrft + 13.85 bdrms 

         (29.48)  (0.00064)             (0.013)             (9.01) 

         [36.28]  [0.0012]               [0.017]             [8.28] 

                       N=88             R
2
=0.672 

The robust standard error on lotsize is almost twice as large as the homoskedastic-only 

standard error, making lotsize much less significant (the t-statistic falls from about 3.22 to 

about 1.65). The t-statistic on sqrft also falls, but it is still very significant. The variable bdrms 

actually becomes somewhat more significant but is still barely significant. The most important 

change is in the significance of lotsize. 

b) 

 lm3b <- lm(lprice ~ llotsize + lsqrft + bdrms, data=house) 

 summary(lm3b); shccm(lm3b) 

For the log-log model:  

                log(price_hat) = -1.30 + 0.0168 log(lotsize) + 0.700 log(sqrft) + 0.037 bdrms 

         (0.65)  (0.038)                       (0.093)                  (0.028) 

         [0.76]  [0.041]                       [0.10]                    [0.030] 

                       N=88             R
2
=0.643 

Here, the heteroscedasticity-robust standard error is always slightly greater than the 

corresponding usual standard error, but the differences are relatively small. In particular, 

log(lotsize) and log(sqrft) still have very large t-statistics, and the t-statistic on bdrms is not 

significant at the 5% level against a one-sided alternative using either standard error. 

c) Using the logarithmic transformation of the dependent variable often mitigates, if not 

entirely eliminates, heteroskedasticity. (see Wooldridge section 6.2, Dougherty in chapter 7, 

section about non-linear models). This is certainly the case here, as no important conclusions 

in the model for log(price) depend on the choice of standard error. (We have also transformed 

two of the independent variables to make the model of the constant elasticity variety in lotsize 

and sqrft). 

d) After estimating the equation in part b) we obtain squared OLS residuals. The full White-

test is based on the R
2
 from the auxiliary regression (with an intercept) on log(lotsize), 

log(sqrft), bdrms, log
2
(lotsize), log

2
(sqrft), bdrms

2
, log(lotsize)·log(sqrft), log(lotsize)·bdrms, 

log(sqrft)·bdrms 

 house$lm3b.sqres <- lm3b$residuals^2 
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 lm3b.white.test <- lm(lm3b.sqres ~ llotsize*lsqrft*bdrms - llotsize:lsqrft:bdrms 

+ I(llotsize^2) + I(lsqrft^2) + I(bdrms^2), data=house); shccm(lm3b.white.test) 

 T <- summary(lm3b.white.test)$r.squared * nrow(house) 

 pchisq(q=T, df=9, lower.tail=F) 

With 88 observations, the nR
2
 version of the White statistic is 9.55, and this is the outcome of 

an (approximately) chi-squared random variable with 9 degrees of freedom. The p-value is 

about 0.385, which provides little evidence against the homoskedasticity assumption. 

 

 

Exercise 4. Autocorrelation (optional) 

Load bond_int_rates.csv. It contains data on returns for AAA bonds and interest rates from 

US Treasury Bills from January, 1950 to December, 1999. 

 bond <- read.csv("bond_int_rates.csv", header=T) 

Generate the variable to use to define the date: 

 bond$paneldate <- as.yearmon(bond$paneldate, format="%Ym%m") 

regress changes in AAA bond returns on US Treasury Bill interest rates.  

 lm4 <- lm(daaa ~ dus3mt, data=bond); shccm(lm4) 

Investigate serial autocorrelation in residuals. For this purpose, create and examine the 

residuals for this analysis, showing the residuals over time.   

Some useful definitions: 

Are the residuals distributed evenly across time?  

e <- lm4$res 

plot(e ~ bond$paneldate, type="l") 

N <- length(e) 

e1 <- c(NA, e[1:(N-1)]) 

plot(e ~ e1) 

cor(e, e1, use="complete") 

Interpretation: the positive correlation indicates that if the model under-predicts in one period 

it does the same the following time. This is because the adjustment to equilibrium is not 

achieved automatically, and therefore errors are followed by errors of the same sign. 

This could have been done using the definition of the lag operator. Lag operator:  

 L · yt = yt-1 

L
2 
· yt = L · (L · yt) = L · yt-1 = yt-2 

L
n 
· yt = yt-n 

Are the residuals independent over time?  

 durbinWatsonTest(lm4, max.lag=1, alternative="positive") 

This command computes the Durbin-Watson statistic to test for positive 

(alternative=”positive”), first-order (max.lag=1) serial correlation in the disturbances when all 

the regressors are strictly exogenous. durbinWatsonTest values: if there were no 

autocorrelation, the value of the Durbin-Watson statistic would be around 2, and the closer the 

value is to 0 or to 4, the greater the autocorrelation. 

In our case the lower and upper bound critical values at 5% are 1.86257 and 1.86925 

respectively (http://www.stanford.edu/~clint/bench/dw05d.htm with T=600 and K=2). If the 

http://www.stanford.edu/~clint/bench/dw05d.htm
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test statistic is below the lower bound critical value, this is evidence of positive 

autocorrelation. If it is between the lower and upper bound critical values, the test is 

inconclusive. If it is above the upper bound critical value, this is evidence of the error terms 

not being positively correlated. To test for negative autocorrelation, follow the same logic but 

use option alternative=”negative” with (4 – DW statistic) as your test statistic. 

In our case, the test statistic of 1.45 is lower than the lower bound critical value and so we can 

conclude that the model does suffer from autocorrelation in the residuals. 

 

Linearity  

In linear regression, the assumption is that the relationship between the response variable and 

the predictors is linear.  If this assumption is violated, trying to fit a straight line to data that 

does not follow a straight line will be a mis-specification, and furthermore, may violate the 

assumption of disturbances being iid. We saw in the lectures RESET as a test to check for 

relevant omitted variables, it can also be used to test for non-linearities. 

We estimate: yi = β0 + β1·x1 + ... + βk·xk + εi, to try for non-linearities, we could do: 

 yi = β0 + β1·x1 + ... + βk·xk + γ11x
2

1
 + γ22x

2

2
 + ... + γkkx

2

k
 + γ12x1x2 + ... + εi 

A test of non-linearity would consist just on testing that each of the gammas is equal to 0. 

RESET (regression specification error test) consist of doing something simpler: 

yi = β0 + β1·x1 + ... + βk·xk + γy·y
^ 2

i  + εi. 

Note, however, that y
^2

i  is stochastic (β is in it) and so gamma should only be valid for big 

samples. (Also higher order terms of y
^
 could be added). RESET test is, then, a 

misspecification test, but if the null is rejected it doesn‟t tell us how to solve this problem.  

Otherwise, we should see for each of the plots just a random scatter of points.   

 

 

Exercise 5. Linearity 

Open the nations.csv dataset and examine the data.  

Fit a regression model of birth on gnpcap (GNP per capita) and urban (the proportion of 

urban population) 

Collect the residuals  

 e <- lm5$resid 

Examine the scatter plot of the residuals against the different independent variables in the 

model. Use the help command to understand any of the commands below you are not familiar 

with. 

 plot(e ~  lm5$model[,2]); lines(lowess(cbind(lm5$model[,2], e), f=1), col=2) 

 plot(e ~ lm5$model[,3]); lines(lowess(cbind(lm5$model[,3], e), f=1), col=2) 

Notice the clear deviation from linearity with respect to gnpcap    

The resettest command performs a test of regression model specification.  It performs a 

regression specification error test (RESET) for omitted variables.  It creates new variables 

based on the predictors and refits the model using those new variables to see if any of them 

would be significant.  Execute an resettest and assess results. 

Let's look at the relationship between these variables more closely. 

 plot(subset(nations, select=c("birth","gnpcap","urban"))) 
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Assess the linearity of the relation between birth rate and per capita gross national product and 

between birth rate and urban population. 

It is possible that gnpcap is very skewed in its distribution. This may affect the linearity in the 

relationship.   

Examine the variable gnpcap, using summary. Examine its distribution. density gives a 

kernel density estimate.  It can be thought of as a histogram with narrow bins and moving 

average.  Kernel density is the smoothed out contribution of each observed data point over a 

local neighbourhood of that data point. 

plot(density(nations$gnpcap)) 

grid.x <- seq(-10000, 20000, 1) 

grid.y <- dnorm(grid.x, sd=sd(nations$gnpcap)) 

lines(grid.x, grid.y, col="blue", lwd=2)  
 

legend("topright", legend=c("Density of gnpcap","Normal density"), 

fill=c("green","blue")) 

The distribution of gnpcap is very skewed. This suggests that some transformation of the 

variable may be necessary.  A commonly used transformation is log transformation.   

 nations$lgnp <- log(nations$gnpcap)  

Does the transformation help reduce the skewness of the variable? 

Fit a regression model replacing gnpcap by lgnp, and examine linearity 

lm5b <- lm(birth ~ lgnp + urban, data=nations) 

Assess the deviation from linearity. Execute an resettest and assess results. 

 

Normality  

Normality of residuals is only required for valid hypothesis testing. The normality assumption 

assures that the p-values for the t-tests and F-test will be valid.  Normality is not required in 

order to obtain unbiased estimates of the regression coefficients.  OLS regression merely 

requires that the residuals (errors) be identically and independently distributed.  There is no 

assumption or requirement that the predictor variables be normally distributed.  After 

regression analysis, we can use the model$residuals command to create residuals, and then 

use commands such as density, qnorm and pnorm to check the normality of the residuals.  

 

 

Exercise 6. Normality 

1. Use the earnings eaef21 dataset from session 3 (see Annex 1 for variable descriptions) 

and regress EARNINGS on S and ASVABC 

2. Use the model$res command to generate residuals.  

3. Use the density command to produce a kernel density plot. Overlay the plot with a 

normal density. 

The qqnorm command graphs a standardized normal probability plot. In a normal probability 

plot, the data are plotted against a theoretical normal distribution in such a way that the points 

should form an approximate straight line.  Departures from this straight line indicate 

departures from normality. The procedure qqnorm does the following: 

a) The data are arranged from smallest to largest.  

b) The percentile of each data value is determined.  
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c) From these percentiles, normal calculations are done to determine their 

corresponding z-scores.  

d) Each z-score is plotted against its corresponding data value 

qqnorm is sensitive to non-normality in the middle range of data 

4. Execute the command qqnorm and assess normality of residuals. 

5. Examine the results from density and qqnorm applied to the residuals after a semi-log 

(log-level) regression  

 

Unusual and Influential data  

A single observation that is substantially different from all other observations can make a 

large difference in the results of your regression analysis.  If a single observation (or small 

group of observations) substantially changes your results, you would want to know about this 

and investigate further.  There are three ways that an observation can be unusual. 

Outliers: In linear regression, an outlier is an observation with a large residual. In other 

words, it is an observation whose dependent-variable value is unusual given its values on the 

predictor variables. An outlier may indicate a sample peculiarity or may indicate a data entry 

error or other problem.  

Leverage: An observation with an extreme value on a predictor variable is called a point with 

high leverage. Leverage is a measure of how far an independent variable deviates from its 

mean. These leverage points can have an effect on the estimate of regression coefficients.  

Influence: An observation is said to be influential if removing the observation substantially 

changes the estimate of coefficients. Influence can be thought of as the product of leverage 

and outlierness.  

We will focus on outliers in this module.  How can we identify outlying observations? Let's 

look at an example dataset called crime. This dataset appears in Statistical Methods for Social 

Sciences, Third Edition by Alan Agresti and Barbara Finlay (Prentice Hall, 1997).  

The variables are state name (state), violent crimes per 100,000 people (crime), murders per 

1,000,000 (murder),  the percent of the population living in metropolitan areas (pctmetro), 

the percent of the population that is white (pctwhite), percent of population with a high 

school education or above (pcths), percent of population living under poverty line (poverty), 

and percent of population that are single parents (single).   

 

 

Exercise 7: Outliers 

Load the dataset crime.csv and inspect. A regression model for crime might have pctmetro, 

poverty, and single as independent variables.  

Look at the scatter plots of crime against each of the predictor variables before the regression 

analysis so we will have some ideas about potential problems.  

 plot(subset(crime, select=c("crime", "pctmetro", "poverty", "single"))) 

Notice the data point that is far away from the rest of the data points. Generate individual 

graphs of crime with pctmetro and poverty and single to get a better view of these scatter 

plots.  Use the „add text‟ option to label each marker with the state name to identify outlying 

states. 

 plot(crime ~ pctmetro, data=crime, col="white") 

 text(x=crime$pctmetro, y=crime$crime, labels=crime$state) 
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Which is the state that requires extra attention? 

Fit a regression model for crime with pctmetro, poverty, and single as independent 

variables.  

 lm7 <- lm(crime ~ pctmetro + poverty + single, data=crime); shccm(lm7) 

We can examine the studentized residuals as a first means for identifying outliers.  

Use the rstudent command to generate studentized residuals. Studentized residuals are a type 

of standardized residual that can be used to identify outliers.  

 crime$rstudent <- rstudent(lm7) 

Sort the data on the residuals and show the 10 largest and 10 smallest residuals along with the 

state id and state name.   

 crime <- crime[order(rstudent), ] 

 head(crime) 

 tail(crime) 

We should pay attention to studentized residuals that exceed +2 or -2, and get even more 

concerned about residuals that exceed +2.5 or -2.5 and even yet more concerned about 

residuals that exceed +3 or -3.  These results show that DC and MS are the most worrisome 

observations followed by FL. 

Show all of the variables in our regression where the studentized residual exceeds +2 or -2, 

i.e., where the absolute value of the residual exceeds 2.   

 subset(crime, abs(rstudent) > 2) 

We see the data for the three potential outliers we identified, namely Florida, Mississippi and 

Washington D.C.  

Now, let's run the analysis omitting DC by including data=subset(crime, state != "dc") on 

the lm command (here != stands for "not equal to").  

 lm7b <- lm(crime ~ pctmetro + poverty + single,  

data=subset(crime, state!="dc")); shccm(lm7b) 

What has happened to the results?  The coefficient for single dropped from 132.4 to 89.4.   

Assessment of this result: 

plot(crime ~ single, data=crime, col="white"); text(x=crime$single, 

y=crime$crime,   labels=crime$state) 

m.pctmetro <- mean(crime$pctmetro) 

m.poverty <- mean(crime$poverty) 

r.single <- seq(min(crime$single),max(crime$single),.1) 

myReg <- function(x, model){ 

    coef(model)%*%c(1, m.pctmetro, m.poverty, x) 

} 

y <- sapply(r.single, myReg, model=lm7) 

lines(x=range.single, y=y, col="red", lwd=2) 

y <- sapply(r.single, myReg, model=lm7b) 

lines(x=range.single, y=y, col="blue", lwd=2) 

legend("topleft", legend=c("with DC","without DC"), fill=c("red","blue"))  
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Annex 1. Variables in eaef.csv 
 

Personal variables 

 AGE C age in 1994 

 S C years of schooling (highest grade completed as of 1994) 

 MALE D sex of respondent (1 if male, 0 if female) 

 ETHBLACK D ethnicity: black 

 ETHHISP D  hispanic 

score on a component of the ASVAB battery (scaled with 

mean 50, standard deviation 10) 

 ASVAB2 C  arithmetic reasoning 

 ASVAB3 C  word knowledge 

 ASVAB4 C  paragraph comprehension 

 ASVABC C composite of ASVAB2 (with double weight), ASVAB3 and 

ASVAB4 

 CHILDREN C number of children in the household 

 YOUNGEST C age of youngest child 

 CHILDL06 C presence of a child age < 6 in the household 

 CHILDL16 C presence of a child age < 16, but no child age < 6, in the 

household 

 MARISTAT T marital status, coded as: 1 never married; 2 married, 

spouse present; 3 other 

 MARRIED D married (MARISTAT=2) 

 

Work-related variables 

 EARNINGS C current hourly earnings in $ reported at 1994 interview 

 WORKING D working (has recorded earnings) 

 EMPSTAT T employment status, coded as: 1 employed; 2 unemployed; 

3 out of the labor force 
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