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Exercise 1. Confidence intervals of regression coefficients 
Use oilprice1.csv. This is an example that can be found expanded in the very good book by 
Murray (2006). It has to do with a trial, where the judge has to decide if the price differential 
charged to oil suppliers to a pipe because of differences in the quality of oil is fair (based on 
the market premium for quality). The quality is measured in API degrees (the more the more 
the quality). Up to the trial the additional price charged is 0.15$ per API degree of oil. The 
challengers want a price between 3 and 5 cents. In this data set you have information on the 
crude oil’s quality and price per barrel. 

a) observe by a scatter-plot if quality has any impact on prices. 

b) use regression analysis to quantify this relationship. 

c) construct a 95% confidence interval for how much the price of barrel changes when 
API increases in one degree. 

d) Is then the price charged fair?  

e) Perform the same results in cents. For this create a new variable multiplying the price 
by 100. Does the fit of the regression change? What happens to the coefficients 
estimated? 

Answers: 

a)  
� str() 
� plot(price ~ api, data=oilprice1)  # there’s a strong relationship 

b) 
� lm1 <- lm(price ~ api, data= oilprice1) 
� summary(lm1) 

c)  
( ) ( )( ) 95.0

975.0222975.022
=⋅+≤≤⋅− tbsebtbsebP β  

Lookup 0.975-quantile of t-distribution with n-2 degrees of freedom:  

� qt(p=0.975, df=13-2) # = 2.201 

0.09493 - 0.00827*2.201 ≤≤
2

β 0.09493 + 0.00827*2.201 

0.08 ≤≤
2

β 0.11 

d) The results in the last part indicate that the price that the market pays is statistically within 
the interval 9 cents and 11 cents per API degree, more would be unfair. The price suggested 
by the challenger is too low. 

e) This is another example of Exercise 5. The only change is in the scale of the results. R2 
does not change. 
 
 
Exercise 2. Omitted variable bias and highly correlated regressors 

Create y, z, x1, x2 and x3, generated as follows. Let n=10000, let , , ,i i i iε ω η ς ~ N(0,1) be 

independent random variables with standard normal distribution, i=1, …, n. Define: 
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Then, see Exercise 4 in Lab Session 3, ( ) ( )1 2 1Var x Var x= = ;
1, 2 0.958X Xρ = ;

2, 3 0X Xρ = . 

a) Create a sample of 10000 observations and generate the variables. 
b) Regress y on a constant, x1 and x2. Comment on the outcome. 
c) Regress z on a constant, x2 and x3. Comment on the outcome. 
d) Regress y on a constant and x1, compare this with the regression of y on a 

constant, x1 and x2. Regress z on a constant and x2, compare this with the 
regression of z on a constant, x2 and x3. 

Help: 

To create variables with a standard normal distribution: 

varname <- qnorm(runif (n=1000, min=0, max=1))  

or simply:  

rnorm(n=1000, mean=1, sd=1) 
a) 

epsilon <- rnorm(1000) 
omega <- rnorm(1000) 
eta <- rnorm(1000) 
zeta <- rnorm(1000) 

 

x1 <- 5 + omega + 0.3* eta 
x2 <- 10 + omega 
x3 <- 5 + eta 
y <- 20+ x1 + x2 + epsilon 
z <- 30+ x2 + x3 + zeta 

 

cor(cbind(x1, x2, x3)) 
b) 

� lm2b <- lm(y ~ x1 + x2) robust? 
� vif(lm2b) 

Note all estimators are very close to the population values. This is what we would have 
expected, as they are unbiased, when no relevant variables are omitted (there is no correlation 
between either x1 or x2 and epsilon). In this case, however, they’re not spot on, though. Why 
would this be? The problem is one of multicollinearity, as both regressors are highly 
correlated. The impact that this problem has on the estimated coefficients is not to bias them, 
but to increase their variance, thus increasing the range of the confidence interval. This is the 
only reason why the parameters are not as close to 1 as in part c, below. 
 
Variance Inflation Factor (VIF) 

Under Gauss-Markov assumptions, the variance of the OLS estimator for a typical 
regression coefficient can be shown to be the following  
 
 2
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where Ri is the unadjusted R2 when you regress Xi against all the other explanatory variables 
in the model, that is, against a constant, X2, …., Xi-1, Xi+1, ., Xk.  

If there is no linear relation between Xi and the other explanatory variables in the model, Ri 

will be zero. Obviously, the diagnostic used for multicollinearity is related to Ri 

 
 

The VIF shows us how much the variance of the coefficient estimate is being inflated by 
multicollinearity. The bigger 2

iR  is (i.e. the more highly correlated Xj is with the other 

regressors in the model), the bigger the standard error will be. Indeed, if Xi is perfectly 
correlated with the other regressors ( )12 =iR , the standard error will equal infinity. This is 

referred to as the problem of perfect multicollinearity.  

As the Xs become more highly correlated, it becomes more and more difficult to determine 
which X is actually producing the effect on Y. A 2iR close to 0 means there is little 

multicollinearity, whereas higher values suggest that multicollinearity may be a threat. The 
square root of the VIF tells you how much larger the standard error is, compared with what it 
would be if that variable were uncorrelated with the other X variables in the equation. For 
example, if VIF for a variable were 9, its standard error would be three times as large as it 
would be if its VIF was 1. In such a case, the coefficient would have to be 3 times as large to 
be statistically significant. VIF-statistic ranges from 1.0 to infinity. VIFs greater than 10.0 for 
any variable are generally seen as indicative of severe multicolinearity.  

In this case, the value for VIF is very high, confirming what we observed in the correlation 
matrix above.  

c) 
� lm2c <- lm(z ~ x2 + x3) 

Note all estimators are spot on. 

d) 
lm(y ~ x1) 
lm(y ~ x1 + x2) 
lm(z ~ x2) 
lm(z ~ x2 + x3) 

We observe then that, while in the first regression with y, the estimator 2b  is biased (the bias 

being equal to 
( )1 2

2
1

cov ,

( )

X X

Var X
β ⋅ =1)1, in the first regression with z the estimator 2b  is unbiased 

because 
( )2 3

2

cov ,
0.

( )

X X

Var X
=  The constant in the first regression with z is biased, though. Why? 

Note that according to the true model 
32

30 xxz ++= , but we are not including x3, so the 

constant in the new model is equal to 
2

xz − , which is actually equal to 3530
3
=+ x . The 

same or worse occurs with the first model with y. Now, not only is there an omitted variable 
bias for b2, but the estimated constant is also biased. 
 

                                                 
1 This is a formulae for the bias presented in Wooldridge, equivalent to the one given in class for large samples, 
therefore the magnitude of the inconsistency, in the case when u = β2 X2. 

( )21
1

i
i R

FactorInflationVariance
−

=
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Exercise 3. Non-linear models 
Are any of the following models linear in the parameters? 

 

iiii

iiii

iiii

iiii

iiii

uZXYv

uZXYiv

uZXYiii

uZXYii

uZXYi

+⋅+⋅=

+⋅+⋅=

+⋅+⋅=

+⋅+⋅=

+⋅+⋅=

2

11

4

2

11

2

2

1

21

321

)

)

)

)ln()

)

ββ

ββ

ββ

ββ

βββ

 

Answer: only models ii) and iii) are linear in the parameters. 

If the model is linear in the parameters: the parameters should not be squared, logged, 
inverted or transformed by any function. The variables that multiply these parameters, 
however, may be transformed – this allows us much greater flexibility in capturing aspects of 
the relationship. The following table describes some of these possibilities.  

Model 
 

Dependent 
variable 

Independent 
variable 

Algebraic 
interpretation of ββββ1111    

Conceptual interpretation of ββββ1111 

level-level 
 

Y X ∆Y = β1∆X A constant level change after  
change in one unit of X 

Semi-log 
log-level 

log(Y) X %∆Y = (100*β1)∆X A constant % change in Y after  
change in one unit of X 

Double-log 
log-log 

log(Y) log (X) %∆Y = β1% ∆X A constant  % change in Y after  
change of X in 1% 

Examples: 

Level-level: Example: exercise 3 in session 1. If height changes by 1 unit (one inch, as it is 
measured in inches), how much does weight increase – in pounds? 

Semi-log (or Log-level): In this case an increase of X in one unit always leads to the same 
increment in percentage in Y. For instance: log(wage)= β0 + β1 education + u. 
In this case, β1  gives us the percentage by which wages change with a change of one unit (say 
one more year) in education. Concept:  “rate of return” to education.  

Note that in this model the assumption is that the rate of return is identical for all the 
education levels.  A uniform rate of return is estimated for any additional year in school or 
any additional year in college.  

What would the β1 capture in the following model? log(profit level)=  β0 + β1 capital + u 

Double-log or Log-log: In this case β1  gives you the percentage change in variable Y after a 
change of X by 1%.  Due to an increase (or decrease) of one per cent in X, by how many 
percentage points will Y change? This is the concept of elasticity.  

Take, for instance: log(supply of labour)= β0 + β1 log(wages) + u. This is the elasticity of 
labour supply. 

log(demand of cars) =  β0 + β1 log(car prices)  + β2 log(household income) + u. Now β1 
captures the price elasticity of the demand for cars and β2 collects the income elasticity of the 
demand for cars. 
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Exercise 4. Hypotheses testing in the Log-log model  
Use gasoline.csv. Suppose you want to estimate the demand for gasoline in a given country 
(Uruguay) as a function of the GDP and the price of gasoline in that country: 

 
log(gasolinet)=  β0 +  β1 log(GDPt) + β2  log(pricet) 

 
a) Run the previous regression. Interpret the coefficients for GDP and price of gasoline. 
b) Is the “income” elasticity equal to one? Test this hypothesis. 

 
a) Read the data and estimate the log-log model: 

� gas <- read.csv("gasoline.csv", header=T) 
� lm4 <- lm(log(gasoline) ~ log(gdp) + log(price), data=gas); summary(lm4) 

The coefficients capture the income and price elasticity of demand for gasoline, respectively. 
A 1% increase in GDP produces a 0.86% increment in the demand of gasoline. A 1% 
increment in the price of gasoline produces the effect of reducing the demand in 0.35%.2 

b) We want to test the hypothesis: 

H0: β1 =1;   Ha: β1 ≠1 

The function linearHypothesis from R’s car library computes a F-statistic for carrying out a  
Wald-test-based comparison between our original model lm4 and a linearly restricted model,  
where β1 = 1. 

� library(car) 
� linearHypothesis(model=lm4, "log(gdp)=1") 

The p-value of 0.02 leads us to reject the null hypothesis of constant income elasticity (b1=1) 
at the 5% level. There is little evidence for constant income elasticity of demand for gasoline 
in Uruguay. 
 
 
Exercise 5. Non-linear models. Production function. Multiple hypotheses. 
Use usmetal.txt. Dataset: production data for the year 1994; n=26; US firms in the sector of 
primary metal industries. For each firm, values are given of production (y, value added in 
millions of dollars), labour (L, total payroll in millions of dollars), and capital (K, capital stock 
in millions of 1987 dollars).  

a) Generate new variables as logs of the old variables. Inspect the variables. 
(graph with histogram and scatter) 

b) Using a double log specification, estimate a production function. (This has 
been called the Cobb-Douglas production function). Comment on the 
coefficients.  

c) Test the hypothesis that the sum of the coefficients is equal to 1. 
d) Impose the restriction and re-estimate. Compare the standard error for the 

estimator of 3β . 

Help for c): Cobb-Douglas functions 

The Cobb-Douglas function is defined as follows: 

                                                 
2 In strict terms the t-Statistics reported here cannot be compared with the t distribution since the variables are 
non-stationary (this is an advanced problem that is treated in time series courses). But just for the sake of the 
exercise let’s pretend that the p-values are still valid. 
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)log()log()log(

:therefore

321

1
32

ii

ii

LKY

LKY

i

i

⋅+⋅+=

⋅⋅=

βββ

β ββ

3 

d) linearHypothesis(model=lm1c, "lK=lL"). The hypothesis is rejected at the 5% level. 

e) In order to impose the restriction take into account: 1:
32

=+ ββHo  

Explanation: CRS is such that: f(λK, λL)=λf(K,L). Then: 

3
2

3
2

32

3
2

3
2

3
2

11

11

1

)()(

,

)(

,,

ββββ

ββ

β

ββ

ββ

β

βλβλ

βλλλβ

β

iii

iii

ii

LKLK

then

LKLK

CRSiftherefore

LKY

i

i

i

⋅⋅⋅=⋅⋅⋅

⋅⋅⋅=⋅⋅

⋅⋅=

+

 

and these expressions are equivalent if: λλ ββ =+ 32  or, equivalently: 132 =+ ββ  
� linearHypothesis(model=lm1c, "lk+ll=1") 

f) To impose CRS first note that: 132 =+ ββ ; so: 32 1 ββ −= .  

iii uLKY
i

+⋅+⋅+= )log()log()log( 321 βββ  

iii uLKY
i

+⋅+⋅−+= )log()log()1()log( 331 βββ  

iii uKLKY
ii

+−⋅+=− )]log()[log()log()log( 31 ββ  

In R there is no need to transform the variables. To subtract log(K) from log(Y) on the left 
hand side of the formula, we use R’s offset command. To inhibit misinterpretation of the 
subtraction lL – lK, we use the function I(). 

� lm1f <- lm(lY ~ I(lL - lK), offset=lK, data=metal) 
� anova(lm1c, lm1f) 

The final F-test, using the anova-function, is equivalent to the linear hypothesis of CRS and 
confirms that the models lm1c and lm1f are almost equal. 
 
 
Exercise 6. Bank wages 
bank.csv includes information on salaries in a US bank. Describe and summarize. 

� bank <- read.csv("bank LS4.csv", header=T) 
�  str(bank) 

i) Regress the log of salaries on a constant, education, the log of the starting salary, 
and define a way to capture percentage differences due to gender and belonging to 
a minority. 

ii) Are there significant differences between minority and non-minority employees? 
By gender? Is there any variation due to being simultaneously female and also 
minority?  

                                                 
3 Remember ln(AB)=ln(A)+ln(B); log(Aα )=α * ln(A) 
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iii) Test the hypothesis of the returns to education being = 7%. Then test this 
hypothesis jointly which the hypothesis of female and minority having the same 
discriminatory effect. 

i) First of all we check whether we have a big or a small sample. It’s big, so we use robust 
standard errors. 

First things first. They ask us to work with males and log(salary). They give us these variables 
already. Note that differences of variables in log multiplied by 100 are used to estimate 
percentage increments, if these are low. In this exercise we estimate: 

ii

iii

uority

malesalbegineducationsalary

++
++++=

min.

.log..)log(

4

3210

β
ββββ  

� logsalbegin <- log(salbegin) 
� lm6i <- lm(logsal ~ educ + logsalbegin + male + minority, data=bank) 
� shccm(lm6i) 

Then given all the rest of the characteristics, the difference between two typical individuals, a 
female and a male would be given by 3β , which indicates how much more (if negative, less) 

men earn than women – the results suggest that males earn 8% more on average. Likewise, 

4β  indicates differences against (if negative) of minorities – minorities appear to earn 8% 
less. 

ii)  

Yes and yes. The null hypotheses of the coefficients being zero are rejected. To capture 
specific differences for female pertaining to the minority we do 

� bank$female <- ifelse(bank$male==0, 1, 0) 
� bank$femaleandminority <- bank$female * bank$minority 
� lm6ii <- lm(logsal ~ educ + male + minority + femaleandminority, data=bank) 

As we can see, there is a special negative effect (discrimination) this group seems subject to. 

iii) 
� lm6iii <- lm(logsal ~ educ + female + minority , data=bank) 
� linearHypothesis(lm6iii, "educ = 0.07") 

It is not rejected. 

� linearHypothesis(lm5vi, c("educ = 0.07", "female = minority")) 

 
femaleorityeduc

femaleorityeduc

oreitherHa

andHo

βββ
βββ
≠≠

==

min

min

0:

07.0:
 

The null of these hypotheses is rejected, the effect is statistically higher for female, and that’s 
the reason to reject that both hypotheses apply, despite the fact that on its own, the first 
hypothesis is not rejected. 


