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Exercise 1. Confidence intervals of regression coefficients

Use oilpricel.csvThis is an example that can be found expandebarvery good book by
Murray (2006). It has to do with a trial, where fhdge has to decide if the price differential
charged to oil suppliers to a pipe because of miffees in the quality of oil is fair (based on
the market premium for quality). The quality is reeged in API degrees (the more the more
the quality). Up to the trial the additional prickarged is 0.15$ per API degree of oil. The
challengers want a price between 3 and 5 centthidrdata set you have information on the
crude oil's quality and price per barrel.

a) observe by a scatter-plot if quality has any immarcprices.
b) use regression analysis to quantify this relatignsh

c) construct a 95% confidence interval for how muah phice of barrel changes when
APl increases in one degree.

d) Is then the price charged fair?

e) Perform the same results in cents. For this createw variable multiplying the price
by 100. Does the fit of the regression change? Wiagipens to the coefficients

estimated?
Answers:
a)
> str()
» plot(price~api, data=oilpricel) # there’s a strong relationship
b)
» Iml<-Im(price~ api, data= oilpricel)
» summary(lml)
c)

P(b, —sdb,)(t,, < B, <b +sdb)it,. )= 095
Lookup 0.975-quantile of t-distribution with n-2gtees of freedom:
> Qt(p=0.975, df=13-2) # = 2.201
0.09493 - 0.00827*2.2(H 3, <0.09493 + 0.00827%2.201
0.08< S, <0.11

d) The results in the last part indicate that thegthat the market pays is statistically within
the interval 9 cents and 11 cents per API degreeewould be unfair. The price suggested
by the challenger is too low.

e) This is another example of Exercise 5. The onlgnge is in the scale of the result$. R
does not change.

Exercise 2. Omitted variable bias and highly correlated regressors

Create vy, z, x1, x2 and x3, generated as follovet. 1=10000, lets, @,/ ,¢ ~ N(0,1) be
independent random variables with standard norms#iloution,i=1, ..., n.Define:
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X; =5+a@ +0.31,
X =10+ @
Xy =5+17,

Y, =204 % + % +§

z =30+ % +%*+§

Then, see Exercise 4 in Lab SessioWa(x ) = Var( x)=1; p,, ., =0.958;
IOXZ,X3 :O

a) Create a sample of 10000 observations and gertemat@riables.

b) Regress y on a constant, x1 and x2. Comment ooutoeme.

c) Regress z on a constant, x2 and x3. Comment couticeme.

d) Regress y on a constant and x1, compare this Wwihdgression of y on a
constant, x1 and x2. Regress z on a constant andox2pare this with the
regression of z on a constant, x2 and x3.

Help:

To create variables with a standard normal distidiou
varname <- gnorm(runif (n=1000, min=0, max=1))
or simply:

rnorm(n=1000, mean=1, sd=1)
a)

epsilon <- rnorm(1000)

omega <- rnorm(1000)

eta <- rnor m(1000)

zeta <- rnor m(1000)

x1<-5+ omega + 0.3* eta
X2 <- 10 + omega
x3<-5+eta

y <- 20+ x1 + x2 + epsilon
z <- 30+ x2 + x3 + zeta

cor (chind(x1, x2, x3))
b)
» 1m2b <- Im(y ~ x1 + x2) robust?
> vif(Im2b)

Note all estimators are very close to the popufatralues. This is what we would have
expected, as they avmbiased when no relevant variables are omitted (thereisorrelation
between either x1 or x2 and epsilon). In this chsgever, they're not spot on, though. Why
would this be? The problem is one of multicollingaras both regressors are highly
correlated. The impact that this problem has oretitamated coefficients is not to bias them,
but to increase their variance, thus increasingdge of the confidence interval. This is the
only reason why the parameters are not as closeson part c, below.

Variance I nflation Factor (VIF)

Under Gauss-Markov assumptions, the variance of the OLS estimator for a typical
regression coefficient can be shown to be the otig

o’ 1

Populatiorvarianceof b, = g;, = v U(X)xl =
nVar(X;) 1-R
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where Ris the unadjusted Rvhen you regress;Xgainst all the other explanatory variables
in the model, that is, against a constant, .X., Xi.1, X1, ., X«

If there is no linear relation between ahd the other explanatory variables in the madgel,
will be zero. Obviously, the diagnostic used forltcollinearity is related to R

Variancelnflation Factor =(1_%R2)

The VIF shows us how much the variance of the cmefft estimate is being inflated by
multicollinearity. The biggerR® is (i.e. the more highly correlated; ¥ with the other
regressors in the model), the bigger the standenat evill be. Indeed, if Xis perfectly
correlated with the other regressc(l%2 :1), the standard error will equal infinity. This is
referred to as the problem of perfect multicolliriga

As the Xs become more highly correlated, it becomese and more difficult to determine
which X is actually producing the effect on Y. R’close to 0 means there is little

multicollinearity, whereas higher values suggest tulticollinearity may be a threat. The
square root of the VIF tells you how much larger ¢handard error is, compared with what it
would be if that variable were uncorrelated witle thther X variables in the equation. For
example, if VIF for a variable were 9, its standardor would be three times as large as it
would be if its VIF was 1. In such a case, the fioeht would have to be 3 times as large to
be statistically significant. VIF-statistic rangesm 1.0 to infinity. VIFs greater than 10.0 for
any variable are generally seen as indicative wérgemulticolinearity.

In this case, the value for VIF is very high, comiing what we observed in the correlation
matrix above.

c)

» Im2c<-Im(z ~x2 + x3)
Note all estimators are spot on.
d)

Im(y ~x1)
Im(y ~ X1 + x2)
Im(z ~ x2)
Im(z ~x2 + x3)

We observe then that, while in the first regressidth y, the estimatob, is biased (the bias

cov( X, X . , . . , . .
being equal tos, Bﬁﬂ){ in the first regression with z the estimalpris unbiased
ar( X,

cov( X, ,X . : : , -
becauseﬁ =0. The constant in the first regression with z issbd though. Why?
ar(X,
Note that according to the true modegF 30+ X + X, but we are not includings, so the

constant in the new model is equalZo- X,, which is actually equal t80+ X =35. The

same or worse occurs with the first model with gwN not only is there an omitted variable
bias forby,, but the estimated constant is also biased.

! This is a formulae for the bias presented in Waddige, equivalent to the one given in class fogdesamples,
therefore the magnitude of the inconsistency, édéise when = £, X,.
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Exercise 3. Non-linear models

Are any of the following models linear in the paeters?

i) Y=8IX +BL[Z +u

i) In(Y)=8 X +B [Z +u

i) Y=8IX'+B [Z +u

iv) Y=8IX +8°[Z +u

V) Y'=BIX +5 [Z +u

Answer: only models ii) and iii) are linear in the parasrst

If the model is linearn the parameters. the parameters should not be squared, logged,
inverted or transformed by any function. The vdeabthat multiply these parameters,
however, may be transformed — this allows us muehtgr flexibility in capturing aspects of
the relationship. The following table describes sahthese possibilities.

M odel Dependent | Independent | Algebraic Conceptual interpretation of B,
variable variable inter pretation of 4

level-level Y X AY = B1AX A constant level change after
change in one unit of X

Semi-log log(Y) X %AY = (100*3,)AX A constant % change in Y after

log-level change in one unit of X

Double-log log(Y) log (X) %AY = 3,% AX A constant % change in Y after

log-log change of X in 1%

Examples:

L evel-level: Example: exercise 3 in session lhéightchanges by 1 unit (one inch, as it is
measured in inches), how much deesghtincrease — in pounds?

Semi-log (or L og-level): In this case an increase of X in one unit alwagsl$ to the same
incrementin percentagen Y. For instancelog(wage)=£, + [; education + u

In this casep; gives us the percentage by which wages changeandtfange of one unit (say
one more year) in education. Concept: “rate afrrétto education.

Note that in this model the assumption is thatréte of return is identical for all the
education levels. A uniform rate of return is estied for any additional year in school or
any additional year in college.

What would the3; capture in the following model@g(profit level)= £, + 3; capital + u

Double-log or L og-log: In this casds; gives you the percentage change in variable Y after
change of X by 1%. Due to an increase (or decjedsme per cent in X, by how many
percentage points will Y change? This is the conoéplasticity.

Take, for instancdog(supply of labour)=8, + 3;log(wages) + uThis is the elasticity of
labour supply.

log(demand of cars) 56, + 5; log(car prices) + S-log(household income) + INow 3,
captures the price elasticity of the demand fos eaud(3, collects the income elasticity of the
demand for cars.
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Exercise 4. Hypotheses testing in the Log-log model

Use _gasoline.cs\5uppose you want to estimate the demand for igasiol a given country
(Uruguay) as a function of the GDP and the pricgasoline in that country:

log(gasoling= Bp+ B:10g(GDR) + - log(prica)

a) Run the previous regression. Interpret the coeifits for GDP and price of gasoline.
b) Is the “income” elasticity equal to one? Test thypothesis.

a) Read the data and estimate the log-log model:

» gas<-read.csv(" gasoline.csv", header=T)
» Im4 <- Im(log(gasoline) ~ log(gdp) + log(price), data=gas); summary(Im4)

The coefficients capture the income and price ieiasbf demand for gasoline, respectively.
A 1% increase in GDP produces a 0.86% incremethteérdemand of gasoline. A 1%
increment in the price of gasoline produces thectfdf reducing the demand in 0.35%.

b) We want to test the hypothesis:
HO: 5;=1; Ha:B;#1

The function linearHypothesis from R’s car libragmputes a F-statistic for carrying out a
Wald-test-based comparison between our originalehlotd and a linearly restricted model,

wheref3;= 1.

» library(car)
» linear Hypothesis(model=Im4, " log(gdp)=1")

The p-value of 0.02 leads us to reject the nulldtlgpsis of constant income elasticity=h)
at the 5% level. There is little evidence for camstincome elasticity of demand for gasoline
in Uruguay.

Exercise 5. Non-linear models. Production function. Multiple hypotheses.

Use _usmetal.txtDataset: production data for the year 1994; n+28;firms in the sector of
primary metal industries. For each firm, values gineen of productiony| value added in
millions of dollars), labourl(, total payroll in millions of dollars), and cagi{&, capital stock
in millions of 1987 dollars).

a) Generate new variables as logs of the old variabiepect the variables.
(graph with histogram and scatter)

b) Using a double log specification, estimate a prédadunction. (This has
been called the Cobb-Douglas production functi@Q@mment on the
coefficients.

c) Test the hypothesis that the sum of the coeffisieequal to 1.

d) Impose the restriction and re-estimate. Comparstdredard error for the

estimator off3, .

Help for c): Cobb-Douglas functions
The Cobb-Douglas function is defined as follows:

2 In strict terms the t-Statistics reported herencafe compared with the t distribution since thgables are
non-stationary (this is an advanced problem thakgted in time series courses). But just forsthiee of the
exercise let's pretend that the p-values areatlit.
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Y =4 KA 0P

therefore 3

log(Y; ) =B, + 5, Iog(K, ) + 5, Hog(L; )

d) linear Hypothesis(model=Im1c, " IK=IL"). The hypothesis is rejected at the 5% level.

€) In order to impose the restriction take into actoto : g, + 5. =1
Explanation: CRS is such thatAl{, AL)=Af(K,L). Then:

Y, = K" 0
therefore if CRS

A IAK) " DL =A03 K™ 0P

then

AR OB [L)* = A 0B K L

and these expressions are equivalendif® = A or, equivalently:5, + 8, = 1
» linearHypothesis(model=Im1c, " Ik+l[=1")

f) To impose CRS first note thgf, + 5, = ; d40: B, =1- f;.

log(Y; ) = B, + B, Uog(K ) + B, og(L;) +u

log(Y; ) = B, + @~ B;) Uog(K ) + B, Log(L; ) +y,

log(Y; ) —log(K, ) = B, + B, flog(L;) —log(K )] +u,

In R there is no need to transform the variablessdbtract log(K) from log(Y) on the left
hand side of the formula, we use Rf$set command. To inhibit misinterpretation of the
subtraction IL — IK, we use the functid().

» Imif <-Im(lY ~I(IL - IK), offset=IK, data=metal)
» anova(lmlc, Im1f)

The final F-test, using the anova-function, is gglent to the linear hypothesis of CRS and
confirms that the models Im1c and Im1f are almgsia¢

Exercise 6. Bank wages
bank.csvincludes information on salaries in a US bank.dbibe and summarize.
» bank <-read.csv("bank LS4.csv", header=T)

» str(bank)

)] Regress the log of salaries on a constant, educdhie log of the starting salary,
and define a way to capture percentage differedaego gender and belonging to
a minority.

i) Are there significant differences between minoait non-minority employees?
By gender? Is there any variation due to being kanaously female and also
minority?

¥ Remember In(AB)=In(A)+In(B); log(A)=a * In(A)
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1)) Test the hypothesis of the returns to educationgoei7%. Then test this
hypothesis jointly which the hypothesis of fematel aninority having the same
discriminatory effect.

i) First of all we check whether we have a big or alssample. It's big, so we use robust
standard errors.

First things first. They ask us to work with madesl log(salary). They give us these variables
already. Note that differences of variables in hagltiplied by 100 are used to estimate
percentage increments, if these are low. In this@ge we estimate:

log(salary) = S, + .educatio] + S,.logsalbegir + 5,.male +
+ B,.minority, +u
> logsalbegin <- log(salbegin)

» Im6i <- Im(logsal ~educ + logsalbegin + male + minority, data=bank)
» shcem(Ime6i)

Then given all the rest of the characteristics,difierence between two typical individuals, a
female and a male would be given Jy, which indicates how much more (if negative, less)

men earn than women — the results suggest thasmal® 8% more on average. Likewise,
B, indicates differences against (if negative) of onities — minorities appear to earn 8%

less.

i)

Yes and yes. The null hypotheses of the coeffisidoding zero are rejected. To capture
specific differences for female pertaining to thieonity we do

» bank$female <- ifelse(bank$male==0, 1, 0)
> bank$femaleandminority <- bank$female* bank$minority
» Im6ii <- Im(logsal ~ educ + male + minority + femaleandminority, data=bank)

As we can see, there is a special negative effietr{mination) this group seems subject to.
iii)

» Imé6iii <- Im(logsal ~ educ + female + minority , data=bank)

» linearHypothesis(Imé6iii, " educ = 0.07")
It is not rejected.

» linear Hypothesis(Im5vi, ¢(" educ = 0.07", " female = minority"))

HO : ﬂeduc = 007 and ﬁminority = ﬂfemale
Ha: eitherﬁeduc 7 0 or ﬁminority 7 ﬁfemale

The null of these hypotheses is rejected, the ef$estatistically higher for female, and that’s
the reason to reject that both hypotheses applpiethe fact that on its own, the first
hypothesis isiot rejected.



