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Timetable

Timetable

o Lectures
7, 14, 21, 28 Nov, 9-12.30pm @ LT2

o Lab Sessions  EViews and RExcel software
Despo Malikkidou
11, 18, 23, 30 Nov, 2-4pm @ Computer Lab
Jerry He
11, 18, 23, 30 Nov, 2-4pm @ (W2.01, LT2, LT2, LT2)
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Contest (Multiple Choice Exercises)

Sheet 1 | Sheet 2 | Sheet 3 | Sheet 4
Submit on | 13 Nov | 17 Nov | 20 Nov | 22 Nov
Weight 8 % 10 % 12 % 14 %
Sheet 5 | Sheet 6 | Sheet 7 -
Submit on | 27 Nov | 29 Dec | 6 Dec —
Weight 16 % 18 % 22 % -

Assessment (Workbooks)

Book 1 | Book 2

Handed out | 30 Nov | 30 Nov

Submit on | 12 Dec | 12 Dec
Weight 50 % 50 %
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Objectives

Objectives of the module

o “Introduction” to applied statistical methods

o Mathematical sophistication ~ simpler research journal
papers in finance/strategy /marketing ...

@ Learning by doing - do many exercises

@ Should enable you to estimate useful, insightful and
exciting regression models and make careful inferences.
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Motivation

Patterns and relationships in Finance / Management /

Economics with important strategic and policy implications:

@ Do financial intermediaries reduce information asymmetries

on online lending platforms?

o Does management advice improve productivity and
performance of firms?

@ Does microfinance reduce poverty?

o How much are people willing to pay for different hospital
care packages?

@ Does smoking lead to lung cancer?

o Do smaller class sizes lead to better test score performance?
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Causal Effects

Using data to measure causal effects (1)

o Ideally we should do experiments:
e e.g., experiment to estimate effect of access to microcredit
on small enterprise revenue / household consumption /
savings, etc.

o But almost always have to make do with observational
(non-experimental) data
o At best, data from “natural experiments”
e Increasingly, behavioural finance, economics, management
data come from class room experiments
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Causal Effects

Using data to measure causal effects (2)

o What is the difficulty in using observational data when we
wish to estimate causal effects?

o Notion: Data generating process: empirical observations are
outcome of (natural) “experiments”
o The same experiment performed by “nature”, leads to
different outcomes (some randomness)
e And, we have no control over the experiment of interest
We need to:
o identify the causes and factors relevant to the outcome of
interest
o To disentangle effects of the different causes on the outcome
e To come to conclusions about these effects with some
assurance about their level of accuracy, i.e., quantifying our
uncertainty about conclusions
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Learning points

You will (learn) ...

e Statistics studies sets of objects/entities/things (firms,
individuals, households ...)

o Statistics studies “causes of variation”: If there is no
variation, one individual describes the population

e You will learn
o How to exploit variation (between observations in data) to
estimate causal effects
e Hands-on experience of regression with focus on
applications - theory only as needed
e How to evaluate the other people’s analysis - understand
empirical papers critically
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Paradigm

So, you (should) have a useful theory about the phenomenon of

interest. You need to solve:

@ the Specification problem - specify a model from (your)
theory. The mathematical form you think governs the
population. You do not know (and will never know) the
parameters of this

© the FEstimation problem - choose methods to estimate the
unknown parameters governing the population, using
sample data

@ the Inference problem - quantify the degree of uncertainty

attached to these estimates, given that they are based on
just one (random) sample
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Method

Step by step

e Formulate a model (based on hypotheses about the
population)

Gather data - sample
Estimate the model - estimate population parameters

Make inferences - test hypotheses about the population

Interpret results, in terms of the theory
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Review

Topics today:

e Data description: Statistics that summarise data - these are
always “estimates” of the unknown population parameters

@ Probability principles: how can the world be described in
terms of random variables and probability distributions
(i.e., probability models)

@ Next: Introduction to statistical inference: drawing
conclusions about the population from only one sample,
using probability principles
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Review (cont’d)

e Estimation procedures for regression models: why and how
they work

o Inference after regression: how to test hypothesis
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Using the Standard Normal Distribution (SND)

SND Table area

Table entry is area
to left of z
i
=M
Z:
z s:
<3
Q2
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Using the Standard Normal distribution

SND Table

z
00 | 05000
01 | osms
02 | o5
03 | osm
04 | ossst
05 | osets
05 | o
07 | o0
08 | o
09 | osise
10 | os
11 | osess
12 | ose
13 | osm
14 | oo
15 | osm
15 | s
17 | ossse
18 | osen
19 | osr
20 | osm
21 | osen
22 | ot
23 | o
24 | osete
25 | osus
26 | 0%
27 | osees
28 | o
29 | ot
30 | osesr
31 | 090
32 | 0
33 | osms
34 | oser

SND

02 03
05080 05120
05478 05517
05871 05910
06255 06293
06628 06664
06085 07019
074 07357
0% 07673
07939 07967
os212 08238
08461 08485
08685 08708
08888 08907
09065 09082
0922 092%
0835 09310

0%975 08976 09977

09987 09987 09988

0999 0994 0994

09997 08997 09997

09495

0967

09783

09975

09927

09950

09977

0998

0994

09997

@®000000000

09505
09509
09678
09798

09878

0997

Estimators

0000000000000 00

25
05239
0563
06025
06406
06172

09515

09685

09803

09881

09931

09961

08979

09989

09994

0097

09817

0.98%0

099%

Sampling Distribution
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Proportion smaller than 0.837

What proportion of observations are smaller than 0.837

Table entry = 0.7967

z=08
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Proportion greater than —2.157

What proportion of observations are greater than —2.157

Table entry

~ 0.0158 Area = 0.9842

z=-215
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Inverse of SND

Inverse of SND: F~1(.3) =?
Z Value that cumulates 3% of probability

Table entry
RS

z=|
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Example

Inventories in a dealership

An inventory or resource management problem: A dealership’s
stock of new autos is replenished to 20 every month.

Stock

time

o Sales are lost due to stockouts

e Known that demand (X) within the month is normally
distributed with a mean of 15 and a standard deviation of 6

o What is the probability of a stockout?
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Using the Standard Normal distribution

Solving for the stockout probability
P(X > 20)given X ~ N(15,62)

Green area

} X
15 20
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Using the Standard Normal distribution (cont’d)

e Convert x = 20 to its standard normal value

z = (z—p)/o
(20 — 15)/6
= 083

o Find area under SND to the right of z = 0.83

Pr(z>083) = 1—F(0.83)
= 1-0.797
= 0.20

e Probability of stockout = Pr(X > 20) = 0.2
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Using the Standard Normal distribution (cont’d)

Solving for the stockout probability (cont’d)

If the probability of stockout is to be no more than 5%, what
should the reorder point be?

Area=1-.7967
= 2033

]
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Using the Standard Normal distribution (cont’d)

Solving for the reorder point

Area = .9500

Area = .0500
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Using the Standard Normal distribution (cont’d)

Solving for the reorder point (cont’d)
@ We know from the SND that zg05 = 1.645

o We are interested in the corresponding x value

T = WK+ 20050
= 15+1.645 %6
= 249

@ Reorder point of 25 automobiles will keep probability of
stockout at slightly less than 0.05

e By increasing reorder point from 20 to 25 the probability of
stockout falls from .2 to 0.05
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From the dist. of r.v. X, to the dist. of estimators

Begin with a r.v. X and its probability distribution, f(X, ) or
fx(x;01,---,0L), characteristic of the population

Parameter (6) is the fixed, but unknown value (or set of values)
that describes the popln. distribution, e.g.: true mean and
variance of a price distribution

The number of parameters depends on the distribution. The
Normal has two

Note: Distributions have generating mechanisms

e The Central Limit Theorem is an example of a generating
process: a stochastic process that underlies the r.v.
(average, in this case)

A random vector variable (X1, Xa,- -+, X,,) is characterized by
its joint distribution: fx, .. x,(x1, -+ ,zp;61, - ,0K), €.g., a
multivariate normal distribution
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Definitions, contd.

o A statistic is any given function of observable values, which
can be evaluated from a sample, e.g., m = max(Xy, ..., X,,)

@ As a function of random variables, a statistic is itself a
random variable

o An estimator () is the sample counterpart of a(n
unknown) population parameter (). It is a statistic, i.e., it
can be calculated from observed values

@ An estimate is the numerical value obtained when the
estimator is applied to a specific sample

o Sampling distribution is the prob. distribution over values
taken by estimates across all possible samples of the same
size from the population
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Estimators

Unbiasedness

o An estimator 6, is unbiased if E(f) = py =10

o If not, the estimator is biased
bias(f) = E(0) — 0
o Q: Is the sample mean an unbiased estimator of the

population mean? B
o How can we find out whether E[X] = 67

E® CAMBRIDGE
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Estimators

o Let 91 and ég be two unbiased estimators of 6

° EstimAator él is tpe more efficient of the two if
Var(61) < Var(62)

o Among unbiased estimators, the one with the smallest
variance is called the best unbiased estimator

E® CAMBRIDGE
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Estimators

sedness and Efficiency

probability
density
function

~

estimator 91

estimator 0;

<
1]
; 8%
o~
0 Mg
2%
3z
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Estimators

Conflict between unbiasedness and efficienc

probability
density
function

estimator 91

estimator 6,

>
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Estimators

Mean square error: resolving trade-off between bias and inefficiency

@ Think in terms of a loss function, which reflects the cost of
making errors, positive or negative, of different sizes

@ A widely used loss function : Mean square error (MSE) of the
estimator = F( square of deviation of estimator from true )

o MSE(0) = E[(6 — 0)?], which is = 0y? + (uy — 0)?

probability
density
function

of 4

0
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Asymptotic properties of Estimators

Large sample (asymptotic) properties of estimators

@ The finite sample distribution of an estimator may often
not be known

e Even so, statisticians are often able to figure out the
sampling distribution of estimators when n is large enough

o e.g., Central limit theorem

@ One relevant concept here is Consistency of the estimator
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Asymptotic properties of Estimators

Effect of increasing the sample size on the distribution of X

probability density
function of X

n Oy
0.08 1 50

0.04 |

0.02 | =1

n
/

L
50 100 150 200 X

e Assume E(X) = pux =100 and s.d.(X) = ox = 50
e We do not know these population parameters

o We use the sample mean to estimate the population mean
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Asymptotic properties of Estimators

Increasing sample size and the distribution of X (cont’d)

probability density
function of X

n oy
0.08 1 50
4 25
25 10
0.06
n=25
0.04 V4
0.02 n=4
{ n=1
) /
50 100 150 200 1‘7
&2
o How does the shape of the distribution change as the i
sample size is increased? 2%
Q=2
@ The distribution is more concentrated about the pop. mean
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Increasing sample size and the distribution of X (cont’d)

probability density
function of X

0.8

0.6

0.4

0.2 |

n=5000
7/

n Oy

1

4

25
100
1000
5000

50

150

x
50
25
10

1.6
0.7

@ The distribution collapses to a spike at the true value

® 0% =0

@ The sample mean is a consistent estimator of the population

mean.
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Asymptotic properties of Estimators

Large sample ( ) properties of any estimator 6 is to

do with:

o How the sampling distribution of 6,,, where n is the size of
the sample, changes when n increases towards infinity?

o 0 is a consistent estimator for 6 if:

A~

plim(0) =6
ie.,

Prob(d —e <6, <f0+¢)=1 asn— o0 .
&2
/s
o~
5t

¥
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Asymptotic properties of Estimators

Example: Estimator biased in finite samples but consistent

probability density
function of Z (an
estimator of a
population
characteristic 9)

e 0 is an estimator of a population characteristic 6

From the probability distribution of é, 0 is biased upwards
e We will see soon that the sample variance (if measured as

Y (X; — X)?/n is biased downwards
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Asymptotic properties of Estimators

Example: biased in finite samples but consi

probability density
functionof Z

n=1000
n=100
Ve
n=20
Ve

The distribution collapses to a spike with larger samples

ent (cont’d)
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Asymptotic properties of Estimators

Sampling Distribution

Example: biased in finite samples but consistent (cont’d)

probability density
functionof Z
(re-scaled axis)

n=100000
n=1000
/7 n=100

j |

Example?

7
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Sampling and Sampling distribution

Distribution of a sample, Y71, ..., Y}, under random sampling

o Under simple random sampling:

o We choose an individual (firm, household, stock, entity ...)
at random from the population

e Prior to sample selection, the value of Y is random because
the individual is to be selected randomly

o Once the individual is selected, the value of Y is observed,
and Y is not random

o The data set is (Y7,Y2,..,Y,,), Y; = is the value of the r.v.
pertaining to the i*" entity sampled
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Sampling and Sampling distribution

Distribution of Yi, ..., Y,, under simple random sampling

o Because individuals ¢ and j are selected at random, the
value of Y; has no information on the value of Y;
(independent events)

o Y; and Yj are independently distributed

Because Y; and Y; come from the same distribution
e Y; and Y} are identically distributed

So under simple random sampling, Y; and Y; are
independently and identically distributed (i.i.d.)

e More generally, under simple random sampling, {Y;},
i=1,...,n are i.i.d.

Probability theory makes statistical inference about

moments of population distributions simple when samples
drawn from the population are random
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Sampling and Sampling distribution

The sampling distribution of Y’

e Y is a random variable, and its properties are given by the
sampling distribution of Y

The individuals in the sample are drawn at random; so the
vector (Y7, ...,Y,,) is random

So functions of (Y1, ...,Y;) , such as Y, are random.
Different samples, different ¥ values

The distribution of Y over each of the different possible
samples of size n is the sampling distribution of Y

The mean and variance of Y are the mean and variance of
its sampling distribution: E(Y) and Var(Y)

The concept of sampling distribution underpins statistical
analysis
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Sampling and Sampling distribution

Things we want to know about the sampling distribution

e What is the mean of Y?
o If E(Y) = uy, then Y is an unbiased estimator of iy
o What is the variance of Y?
o If the variance of Y is lower than that of another estimators
of y1, then Y estimator is the more efficient
o How does Var(Y) depend on n?

Does }:/ tend to fall closer to pu as n grows large?
e if so, Y is a consistent estimator of u

e Can we pin down the probability distribution (i.e., the
sampling distribution) of Y'?

Judge Business School

* CAMBRIDGE

Session 1: Normality, Estimators http://thiloklein.de 43/ 50


http://www.thiloklein.de

Dates Introduction SND Estimators Sampling Distribution
oo 0000000000 00000000000  OOOOOOO00000000 0000®000000

Sampling and Sampling distribution

Mean of the sampling distribution of Y

o General case - i.e., for Y;, i.i.d. from any distribution:

BYV)=BC Y Vi)=Y B = Y py =py
i=1 i=1

=1

e Y is an unbiased estimator of py (E(Y) = uy)
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Sampling and Sampling distribution

Variance of the sampling distribution of Y’

I
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Sampling and Sampling distribution

B n 1 n
Var(Y) = E|[=) (Yi— MY)] < > (Y = py)
i=1 j=1
1 n n
= 5> D ElYi—uy)(¥; —py)]
i=1 j=1
= ﬁZZCOU(Yi’Yj) = ﬁzay
i=1 j=1 i=1
_
oo
Note: Cov(Y;,Y;) =0fori # j; Cou(Y;, Y;) = Var(Y;) fori=j
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Sampling and Sampling distribution

— 1
Var(Y) = Var E;(Y;)
1 n
= ﬁVar ZZ_;(YZ)

Recall: V(Y] +Y3) = V(Y1) + V(Ya) + 2Cou(Y1, Ya)
But Cov(Y;,Y;) =0fori#j5 (Why?)

So: )
Var(Y) = —nV(Y) 21
n 1
_ o(v)? ey
T
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Sampling and Sampling distribution

Mean and variance of sampling distribution of Y

Y is an unbiased estimator of u

Var(Y) is inversely proportional to n

the spread (st. dev.) of the sampling distribution is
proportional to \/%7

o Larger samples, less uncertainty: Consistent
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Sampling and Sampling distribution

The sampling distribution of Y when n is large

e For small sample sizes, the distribution of Y is complicated,
but if n is large, the sampling distribution is simple!
o Law of Large Numbers
o If (Y1,...,Y,) are i.id. and oy? < 0o, then Y is a consistent
estimator of py : plim(Y') = py
e Y converges in probability to uy
e ie.,asn — oo, Var(Y) = "TY;) -0
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Sampling and Sampling distribution

The Central Limit Theorem (CLT) statement

o If (Y1,...,Yy) are i.i.d. and 0 < oy? < oo, then when n is
large, the distribution of Y is approximated well by a
normal distribution

oY ~N (py, 2= ) approximately
o Standardized Y = —a;{f—" ~ N(0,1) approximately
Tn

o The larger is n, the better the approximation
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