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Timetable

Timetable

Lectures
7, 14, 21, 28 Nov, 9-12.30pm @ LT2

Lab Sessions EViews and RExcel software
Despo Malikkidou
11, 18, 23, 30 Nov, 2-4pm @ Computer Lab
Jerry He
11, 18, 23, 30 Nov, 2-4pm @ (W2.01, LT2, LT2, LT2)
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Deadlines

Contest (Multiple Choice Exercises)

Sheet 1 Sheet 2 Sheet 3 Sheet 4

Submit on 13 Nov 17 Nov 20 Nov 22 Nov

Weight 8 % 10 % 12 % 14 %

Sheet 5 Sheet 6 Sheet 7 –

Submit on 27 Nov 29 Dec 6 Dec –

Weight 16 % 18 % 22 % –

Assessment (Workbooks)

Book 1 Book 2

Handed out 30 Nov 30 Nov

Submit on 12 Dec 12 Dec

Weight 50 % 50 %

Session 1: Normality, Estimators http://thiloklein.de 3/ 50

http://www.thiloklein.de


Dates Introduction SND Estimators Sampling Distribution

Objectives

Objectives of the module

“Introduction” to applied statistical methods

Mathematical sophistication ∼ simpler research journal
papers in finance/strategy/marketing ...

Learning by doing - do many exercises

Should enable you to estimate useful, insightful and
exciting regression models and make careful inferences.
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Motivation

Patterns and relationships in Finance / Management /
Economics with important strategic and policy implications:

Do financial intermediaries reduce information asymmetries
on online lending platforms?

Does management advice improve productivity and
performance of firms?

Does microfinance reduce poverty?

How much are people willing to pay for different hospital
care packages?

Does smoking lead to lung cancer?

Do smaller class sizes lead to better test score performance?
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Causal Effects

Using data to measure causal effects (1)

Ideally we should do experiments:

e.g., experiment to estimate effect of access to microcredit
on small enterprise revenue / household consumption /
savings, etc.

But almost always have to make do with observational
(non-experimental) data

At best, data from “natural experiments”
Increasingly, behavioural finance, economics, management
data come from class room experiments
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Causal Effects

Using data to measure causal effects (2)

What is the difficulty in using observational data when we
wish to estimate causal effects?

Notion: Data generating process: empirical observations are
outcome of (natural) “experiments”
The same experiment performed by “nature”, leads to
different outcomes (some randomness)
And, we have no control over the experiment of interest
We need to:

identify the causes and factors relevant to the outcome of
interest
To disentangle effects of the different causes on the outcome
To come to conclusions about these effects with some
assurance about their level of accuracy, i.e., quantifying our
uncertainty about conclusions
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Learning points

You will (learn) ...

Statistics studies sets of objects/entities/things (firms,
individuals, households ...)

Statistics studies “causes of variation”: If there is no
variation, one individual describes the population

You will learn

How to exploit variation (between observations in data) to
estimate causal effects
Hands-on experience of regression with focus on
applications - theory only as needed
How to evaluate the other people’s analysis - understand
empirical papers critically
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Quantitative research
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Paradigm

So, you (should) have a useful theory about the phenomenon of
interest. You need to solve:

1 the Specification problem - specify a model from (your)
theory. The mathematical form you think governs the
population. You do not know (and will never know) the
parameters of this

2 the Estimation problem - choose methods to estimate the
unknown parameters governing the population, using
sample data

3 the Inference problem - quantify the degree of uncertainty
attached to these estimates, given that they are based on
just one (random) sample
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Method

Step by step

Formulate a model (based on hypotheses about the
population)

Gather data - sample

Estimate the model - estimate population parameters

Make inferences - test hypotheses about the population

Interpret results, in terms of the theory

Session 1: Normality, Estimators http://thiloklein.de 11/ 50

http://www.thiloklein.de


Dates Introduction SND Estimators Sampling Distribution

Review

Topics today:

Data description: Statistics that summarise data - these are
always “estimates” of the unknown population parameters

Probability principles: how can the world be described in
terms of random variables and probability distributions
(i.e., probability models)

Next: Introduction to statistical inference: drawing
conclusions about the population from only one sample,
using probability principles

Session 1: Normality, Estimators http://thiloklein.de 12/ 50

http://www.thiloklein.de


Dates Introduction SND Estimators Sampling Distribution

Review (cont’d)

Further on...

Estimation procedures for regression models: why and how
they work

Inference after regression: how to test hypothesis
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Using the Standard Normal Distribution (SND)

SND Table area
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Using the Standard Normal distribution

SND Table
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Proportion smaller than 0.83?

What proportion of observations are smaller than 0.83?
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Proportion greater than −2.15?

What proportion of observations are greater than −2.15?
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Inverse of SND

Inverse of SND: F−1(.3) =?

Z Value that cumulates 3% of probability
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Example

Inventories in a dealership

An inventory or resource management problem: A dealership’s
stock of new autos is replenished to 20 every month.

Sales are lost due to stockouts

Known that demand (X) within the month is normally
distributed with a mean of 15 and a standard deviation of 6

What is the probability of a stockout?
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Using the Standard Normal distribution

Solving for the stockout probability

P (X > 20)given X ∼ N(15, 62)
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Using the Standard Normal distribution (cont’d)

Solving for the stockout probability (cont’d)

Convert x = 20 to its standard normal value

z = (x− µ)/σ

= (20− 15)/6

= 0.83

Find area under SND to the right of z = 0.83

Pr(z > 0.83) = 1− F (0.83)

= 1− 0.797

= 0.20

Probability of stockout = Pr(X > 20) = 0.2
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Using the Standard Normal distribution (cont’d)

Solving for the stockout probability (cont’d)

If the probability of stockout is to be no more than 5%, what
should the reorder point be?
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Using the Standard Normal distribution (cont’d)

Solving for the reorder point
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Using the Standard Normal distribution (cont’d)

Solving for the reorder point (cont’d)

We know from the SND that z0.05 = 1.645

We are interested in the corresponding x value

x = µ+ z0.05σ

= 15 + 1.645× 6

= 24.9

Reorder point of 25 automobiles will keep probability of
stockout at slightly less than 0.05

By increasing reorder point from 20 to 25 the probability of
stockout falls from .2 to 0.05
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Estimators

From the dist. of r.v. X, to the dist. of estimators

Begin with a r.v. X and its probability distribution, f(X, θ) or
fX(x; θ1, · · · , θL), characteristic of the population

Parameter (θ) is the fixed, but unknown value (or set of values)
that describes the popln. distribution, e.g.: true mean and
variance of a price distribution

The number of parameters depends on the distribution. The
Normal has two

Note: Distributions have generating mechanisms

The Central Limit Theorem is an example of a generating
process: a stochastic process that underlies the r.v.
(average, in this case)

A random vector variable (X1, X2, · · · , Xn) is characterized by
its joint distribution: fX1,··· ,Xn(x1, · · · , xn; θ1, · · · , θK), e.g., a
multivariate normal distribution
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Estimators

Definitions, contd.

A statistic is any given function of observable values, which
can be evaluated from a sample, e.g., m = max(X1, ..., Xn)

As a function of random variables, a statistic is itself a
random variable

An estimator (θ̂) is the sample counterpart of a(n
unknown) population parameter (θ). It is a statistic, i.e., it
can be calculated from observed values

An estimate is the numerical value obtained when the
estimator is applied to a specific sample

Sampling distribution is the prob. distribution over values
taken by estimates across all possible samples of the same
size from the population
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Estimators

Unbiasedness

An estimator θ̂, is unbiased if E(θ̂) = µθ̂ = θ

If not, the estimator is biased

bias(θ̂) = E(θ̂)− θ

Q: Is the sample mean an unbiased estimator of the
population mean?
How can we find out whether E[X̄] = θ?
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Estimators

Efficiency

Let θ̂1 and θ̂2 be two unbiased estimators of θ

Estimator θ̂1 is the more efficient of the two if
V ar(θ̂1) < V ar(θ̂2)

Among unbiased estimators, the one with the smallest
variance is called the best unbiased estimator
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Estimators

Unbiasedness and Efficiency
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Estimators

Conflict between unbiasedness and efficiency
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Estimators

Mean square error: resolving trade-off between bias and inefficiency

Think in terms of a loss function, which reflects the cost of
making errors, positive or negative, of different sizes

A widely used loss function : Mean square error (MSE) of the
estimator = E( square of deviation of estimator from true )

MSE(θ̂) = E[(θ̂ − θ)2], which is = σθ̂
2 + (µθ̂ − θ)

2
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Asymptotic properties of Estimators

Large sample (asymptotic) properties of estimators

The finite sample distribution of an estimator may often
not be known

Even so, statisticians are often able to figure out the
sampling distribution of estimators when n is large enough

e.g., Central limit theorem

One relevant concept here is Consistency of the estimator
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Asymptotic properties of Estimators

Effect of increasing the sample size on the distribution of X̄

Assume E(X) = µX = 100 and s.d.(X) = σX = 50

We do not know these population parameters

We use the sample mean to estimate the population mean

Session 1: Normality, Estimators http://thiloklein.de 33/ 50

http://www.thiloklein.de


Dates Introduction SND Estimators Sampling Distribution

Asymptotic properties of Estimators

Increasing sample size and the distribution of X̄ (cont’d)

How does the shape of the distribution change as the
sample size is increased?

The distribution is more concentrated about the pop. mean
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Asymptotic properties of Estimators

Increasing sample size and the distribution of X̄ (cont’d)

The distribution collapses to a spike at the true value

σ2
X → 0

The sample mean is a consistent estimator of the population
mean.
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Asymptotic properties of Estimators

Large sample (Asymptotic) properties of any estimator θ̂ is to
do with:

How the sampling distribution of θ̂n, where n is the size of
the sample, changes when n increases towards infinity?

θ̂ is a consistent estimator for θ if:

plim(θ̂) = θ

i.e.,
Prob(θ − ε ≤ θ̂n ≤ θ + ε) = 1 as n→∞
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Asymptotic properties of Estimators

Example: Estimator biased in finite samples but consistent

θ̂ is an estimator of a population characteristic θ
From the probability distribution of θ̂, θ̂ is biased upwards
We will see soon that the sample variance (if measured as∑

(Xi − X̄)2/n is biased downwards
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Asymptotic properties of Estimators

Example: biased in finite samples but consistent (cont’d)

The distribution collapses to a spike with larger samples
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Asymptotic properties of Estimators

Example: biased in finite samples but consistent (cont’d)

Example?
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Sampling and Sampling distribution

Distribution of a sample, Y1, ..., Yn, under random sampling

Under simple random sampling:

We choose an individual (firm, household, stock, entity ...)
at random from the population
Prior to sample selection, the value of Y is random because
the individual is to be selected randomly
Once the individual is selected, the value of Y is observed,
and Y is not random
The data set is (Y1, Y2, .., Yn), Yi = is the value of the r.v.
pertaining to the ith entity sampled
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Sampling and Sampling distribution

Distribution of Y1, ..., Yn under simple random sampling

Because individuals i and j are selected at random, the
value of Yi has no information on the value of Yj
(independent events)

Yi and Yj are independently distributed

Because Yi and Yj come from the same distribution

Yi and Yj are identically distributed

So under simple random sampling, Yi and Yj are
independently and identically distributed (i.i.d.)

More generally, under simple random sampling, {Yi},
i = 1, ..., n are i.i.d.

Probability theory makes statistical inference about
moments of population distributions simple when samples
drawn from the population are random
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Sampling and Sampling distribution

The sampling distribution of Ȳ

Ȳ is a random variable, and its properties are given by the
sampling distribution of Ȳ

The individuals in the sample are drawn at random; so the
vector (Y1, ..., Yn) is random
So functions of (Y1, ..., Yn) , such as Ȳ , are random.
Different samples, different Ȳ values
The distribution of Ȳ over each of the different possible
samples of size n is the sampling distribution of Ȳ
The mean and variance of Ȳ are the mean and variance of
its sampling distribution: E(Ȳ ) and V ar(Ȳ )
The concept of sampling distribution underpins statistical
analysis
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Sampling and Sampling distribution

Things we want to know about the sampling distribution

What is the mean of Ȳ ?

If E(Ȳ ) = µY , then Ȳ is an unbiased estimator of µY

What is the variance of Ȳ ?

If the variance of Ȳ is lower than that of another estimators
of µ, then Ȳ estimator is the more efficient
How does V ar(Ȳ ) depend on n?
Does Ȳ tend to fall closer to µ as n grows large?
if so, Ȳ is a consistent estimator of µ

Can we pin down the probability distribution (i.e., the
sampling distribution) of Ȳ ?
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Sampling and Sampling distribution

Mean of the sampling distribution of Ȳ

General case - i.e., for Yi, i.i.d. from any distribution:

E(Ȳ ) = E(
1

n

n∑
i=1

Yi) =
1

n

n∑
i=1

E(Yi) =
1

n

n∑
i=1

µY = µY

Ȳ is an unbiased estimator of µY (E(Ȳ ) = µY )
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Sampling and Sampling distribution

Variance of the sampling distribution of Ȳ

V ar(Ȳ ) = E[(Ȳ − µY )2]

= E

(( 1

n

n∑
i=1

Yi

)
− µY

)2


= E

( 1

n

n∑
i=1

(Yi − µY )

)2


= E

[ 1

n

n∑
i=1

(Yi − µY )

]
×

 1

n

n∑
j=1

(Yj − µY )


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Sampling and Sampling distribution

Variance of the sampling distribution of Ȳ (2)

V ar(Ȳ ) = E

[ 1

n

n∑
i=1

(Yi − µY )

]
×

 1

n

n∑
j=1

(Yj − µY )


=

1

n2

n∑
i=1

n∑
j=1

E [(Yi − µY )(Yj − µY )]

=
1

n2

n∑
i=1

n∑
j=1

Cov(Yi, Yj) =
1

n2

n∑
i=1

σ2Y

=
σ2Y
n

Note: Cov(Yi, Yj) = 0 for i 6= j; Cov(Yi, Yj) = V ar(Yi) for i = j
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Sampling and Sampling distribution

Variance of the sampling distribution of Ȳ - simpler

V ar(Ȳ ) = V ar

[
1

n

n∑
i=1

(Yi)

]

=
1

n2
V ar

[
n∑
i=1

(Yi)

]

Recall: V (Y1 + Y2) = V (Y1) + V (Y2) + 2Cov(Y1, Y2)
But Cov(Yi, Yj) = 0 for i 6= j (Why?)
So:

V ar(Ȳ ) =
1

n2
nV (Yi)

=
σ(Y )2

n
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Sampling and Sampling distribution

Mean and variance of sampling distribution of Ȳ

E(Ȳ ) = µY

V ar(Ȳ ) =
σY

2

n

Ȳ is an unbiased estimator of µ

V ar(Ȳ ) is inversely proportional to n

the spread (st. dev.) of the sampling distribution is
proportional to 1√

n

Larger samples, less uncertainty: Consistent
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Sampling and Sampling distribution

The sampling distribution of Ȳ when n is large

For small sample sizes, the distribution of Ȳ is complicated,
but if n is large, the sampling distribution is simple!

Law of Large Numbers

If (Y1, ..., Yn) are i.i.d. and σY
2 <∞, then Ȳ is a consistent

estimator of µY : plim(Ȳ ) = µY
Ȳ converges in probability to µY
i.e., as n→∞, V ar(Ȳ ) = σY

2

n → 0
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Sampling and Sampling distribution

The Central Limit Theorem (CLT) statement

If (Y1, ..., Yn) are i.i.d. and 0 < σY
2 <∞, then when n is

large, the distribution of Ȳ is approximated well by a
normal distribution

Ȳ ∼ N(µY ,
σY

2

n ) approximately

Standardized Ȳ = Ȳ−µY
σY√
n

∼ N(0, 1) approximately

The larger is n, the better the approximation
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