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Script-files 

Script files are collections of R commands you wish to execute in sequence and comments 

that you add in order to have a better understanding of what is going on. They may become 

especially helpful in complex tasks and to keep track of your actions, to fix errors and to keep 

documentation on how and why you did what you did. 

Concept. Script-files are text-files in which instructions to R are defined by the user in a 

pre-defined sequence. The commands are set and executed in the same order as they are 

defined in the text. As such Script-files are programs, but beware, as in R this word 

(program) is reserved for a very specific kind of program. 

The principle is just that you place a series of commands you intend to execute in a text 

file and the operating system reads through the file and executes the commands. With a 

script file you can modify and replicate your commands, perhaps on new or modified 

datasets. 

Any text-editor may be used to write these, but we start by using the one defined already 

in R for this purpose. 

Run a script-file. You have several ways to do it once a script file is open: 

a) Highlight and press Ctrl+R to run the selected part. 

b) Execute the commands line by line by just pressing Ctrl+R. 

c) Another way is to save the script-file and run it from the command line or from 

another script-file by typing: source(“[your directory]/Scriptname.R”) 

 
 

Exercise 1. Run Script-file from command line 

a) Open a new Script-file 

Write: 

 print(“hello, world”) 

Press Ctrl+R to run it. 

b) Save it in your project area as hello.R 

Change working directory to your project area in the command window: 

 setwd(“[your directory]”) 

Then type: 

 source(“hello.R”) 

c) Create a new script-file, keep it open throughout the session and use it to record the 

(correct) commands you run for each exercise.   

 

 

Main assumptions of the Classic Linear Model 

 
First, a bit of terminology: 

 

 

 

Yi = 1 + 2 
.
 Xi + ui 
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Table 1: Regression terminology 

Y X U  ̂  or simply b Y


 

Dependent 

variable 

Independent 

variable 

Error 

term 

Parameter Estimator of    

(or estimate of  , 

if we have carried 

out the calculations 

from the sample) 

Estimate of 

Y (or 

estimator) 

Explained 

variable 

Explanatory 

variable 

Distur-

bance 

Coefficient   

Regressand Regressor  unknown  
 

  

1 : intercept parameter; 

2 : slope parameter. 

 

 

Exercise 2. The linear model 
 

Load the dataset growth.csv. 

This dataset shows the average rates of growth of GDP and employment for 25 OECD 

countries for the period 1988-1997. It was taken from Dougherty's book. Mexico is not 

included because it is an outlier, as employment increases dramatically after the 

implementation of NAFTA. The reason is that individuals who worked in the informal 

sector (and therefore were not included in the series) moved into the formal sector with 

the arrival of US manufacturing companies. 

 

a) Review the contents and regress employment growth on GDP growth. Provide an 

interpretation of the results. 

b) Visually inspect data and regression line.   

c) Are the coefficients significant?  

d) Is there any other interesting test you may wish to carry out?  

e) Is the fit good?  

f) Build a confidence interval for the slope.  

g) How would you interpret the column after the t?  

h) Explain the remaining of the statistics reported when you run the model 

Answers: 

a)  

 str(growth) 

 lm2 <- lm(empgrow ~ GDPgrow, data=growth); summary(lm2) 

What is the regression line saying? In the first column the table gives the name of the 

regressor, in the second it gives its estimate. The regression implies that a 1 percent 

increase in the growth of GDP generates a 0.48 percent increase in the rate of growth 

of employment. Should the investigator expect increments of the same magnitude in 

growth rate of employment and that of GDP? According to these results she shouldn‟t, 

technical progress is clearly making GDP grow more than employment. 
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The intercept suggests that, if GDP is static (growth = 0), employment will have a 

negative growth rate of 0.55 percent per year (maybe technical change saves labour). 

In some slow-growing countries employment growth has actually been negative, and 

this could be the reason for this result on the intercept. 

b)  

 plot(empgrow ~ GDPgrow, data=growth) 

 abline(lm, col="red") 

It is evident that the true relationship is in fact nonlinear. Probably a function of a 

different form for the explanatory variable would be more suitable. We will study this 

issue in the next session. 

As modelers, we are interested in testing whether GDP growth has or hasn‟t had an 

impact on employment (and therefore shouldn‟t be included in the model). For this 

purpose, we define H0: (so it has no influence). Then we fix the maximum 

probability we allow for the error of type I
1
 (the level of significance) and the critical 

region is defined so that the error of type 2 is minimized. For this purpose we need the 

tables. 

c) Let‟s start with the slope. We may perform two types of tests:  

      i)  We may think that it is meant to be positive, as in the long run both variables 

should be positively correlated. The test would be: 

H0: Ha: 

This is a one tailed test. We have to define the level of significance (let‟s say we fix 

it at 5%and then look for the t-value from the tables at the point up to where the t-

Student cumulates 0.95 of probability. In our case the value we look for is 1.714, as 

we have 23 degrees of freedom. The t-statistic is given in the fourth column. In this 

case the t-statistic is 5.75 (as such, higher than the t from the tables) and, therefore, we 

reject the null. Why‟s that? Remember: 
 bse

b
t

b


 . Commonly, in our examples of 

test of hypothesis we‟re thinking that if then, the distribution of 
 bse

b  is a t-

student with n-K degrees of freedom. Now if 
b

t does not fall within the bigger zone in 

Figure 1, then we decide that the null hypothesis was a wrong one, and we reject it. 

 

Figure 1. One tailed test 

 

                                                
1 The probability of rejecting H0 when it is true. 

t0 



fail to reject 

reject 
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ii) Instead we may have no idea of which the sign of the slope may be. The test would 

be, in that case, a two-tail one: 

H0: Ha: ≠

This is a two-tailed test (we don‟t say that the statistic has to be much larger than the 

null to reject, but just that it has to be far from it: much larger or much smaller). 

Again, we have to define the level of significance (and then look for the t-value 

from the tables. Now we want 5% aggregated in both tails, so we need to look for 

t= t or the value up to which the t-Student cumulates 0.975 of probability. In our 

case, this is 2.069, as we have 23 degrees of freedom. In this case the t-statistic is 5.75 

(as such, higher than the t from the tables) and, therefore, we reject the null.  

            

Figure 2. Two tailed test 

t̂ 

d) In fact it would‟ve been interesting to test H0: Ha: ≠that is, if 

employment grows as fast as GDP or if labour-saving technical progress makes that it 

is less than 1t-statistic would be then (1- 0.4897)/0.08511= 6.13, which is higher than 

2.069, and so we reject the null. 

e) With an R
2
 of 0.59 it seems quite a good fit, especially considering that there‟s only 

one regressor. 

f) We will build the interval of confidence only for the two-tailed test at a 5% level of 

significance. The question in Figure 2 is what is the interval such that 2  falls in it 

with a 95% of confidence? We don‟t have a table of 2 ‟s distribution, but remember 

that: 
 

2

22

2 bse
b

t
b


 , and this distribution is described in tables. We can use, 

therefore, this in order to build the interval of confidence. In fact we want to compute 

the interval in which    95.0
975.02

 tablesfromttP
b

. Basically, we‟re saying that the 

probability that our estimator 
2

b  differ from the parameter 
2

 by a small number, 

 
975.0975.0

ttablesfromt  , is very big, 0.95. It only remains to operate: 

  95.0
975.02

 ttP
b

, then 
  95.0

975.0

2

22 










t

bse
b

P


 

t







 

0 




reject reject 

fail to reject 

- t
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 
  95.0

975.0

2

22

975.0








 


 t
bse

b
tP

     

     95.0
975.0222975.022

 tbsebtbsebP 

     95.0
975.0222975.022

 tbsebtbsebP   

In our case this is:  

0.489737 – 0.0851184 * 2.069 <  < 0.489737 + 0.0851184 * 2.069 

And this is what we have in the last two columns. 

DIY with the intercept. Note that the null is not rejected at 5% significance level when 

we consider two-tailed tests (critical value being 2.07, do: qt(p=1-0.025, df=23) or: 

qt(p=0.025, df=23, lower.tail=F) ); but it is rejected for one-tailed tests (critical value 

being 1.71, do: qt(p=1-0.05, df=23) ).  

g) In the fifth column the p-value is reported. This informs us about how much  

probability is cumulated in both tails. That is the probability of having obtained the t-

statistic that we did obtain, or others higher if the null hypothesis is true. If the p-value 

is less than 0.05 then t


 has fallen in the darker probability zone (the critical region), 

and we reject the null hypothesis at a 5% level of significance. In this case this is what 

happens with the intercept.
2
 Note that p-values and confidence intervals are 

computed for a two-tailed test! 

h) Now, what about the information presented below the model coefficients? It indicates, 

under SS (sum squares) the sum of squares of the model (or explained sum of 

squares): SSE =   
i

i
YY

2

ˆˆ ; the sum of squares of the residuals: SSR = 
i

i
e2

; and of 

the dependent variable (total sum of squares):  SST =   
i

i
YY

2

. Note that it can be 

proved that  

SSE + SSR = SST. This can be used to calculate R
2
 as the proportion of the SST that 

is explained by SSE:  

R
2
 = SSE/SST = 1 – SSE/SST, and it‟ll be between 0 and 1. The degrees of freedom 

for the model is always 1, the degrees of freedom for the residuals are n-K (K being 

the number of betas in the model, in this case 2,
3
 and total degrees of freedom is equal 

to     n-1). Under MS (mean squares) you‟ll find the result of dividing the first column 

by the second. So „mean square residuals‟ corresponds to the estimate for the variance 

of the residuals, in this case, 0.4403. On the left hand side, you have the number of 

observations that were considered (always check), F is a test of the model‟s goodness 

of fit. We‟ll talk about this in the multivariate case as now it does not add any 

information to the t-test of the betas. The adjusted R-squared, as you know, takes into 

account the amount of variables included in the model. We‟ll talk about this also when 

                                                
2 This is what we want, to reject the null. Otherwise, in principle, our model would not be explaining the 

dependent variable. The rule of thumb is: a low value for the p-value indicates that our model is in good health. 
3 Note that you also estimate the variance of the disturbances, but you don‟t count this parameter for this 

purpose. 
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we deal with the multivariate case. Finally, the root MSE is the root of the mean 

squared errors. 

 

 

Exercise 3. The linear model with quadratic terms 

Use housing.csv. For many years it has been conjectured that households spent a constant 

share of their incomes in housing. 

a) Estimate a model to test this, using total expenditure as a proxy for total income. 

b) Is a quadratic form more appropriate? 

 

a) We have data of expenditures on housing and incomes. We want to test whether 

housing/income is constant. So we may want to estimate 

      housingi = 1 + 2 
.
 incomei + ui 

 lm3a <- lm(housing ~ total, data=house) 

    If 1  = 0 then the share would have been constant. This hypothesis is rejected. 

b) We try now housingi = 1 + 2 
.
 incomei + 3 

.
 income

2
i + ui  

 house$totalsq <- house$total^2 

 lm3b <- lm(housing ~ total + totalsq, data=house) 

3  is not significant. Since we don‟t have a theoretical background which would 

define the polynomial form to apply, we drop the squared component: share is 

increasing with income. 

 

 

Exercise 4. Extrapolation and accuracy of least squares 

Load the eaef.csv dataset. Learn a bit about the dataset by using str(). Is it possible to explain 

the weight of the students measured in pounds (weight) with their height measured in inches 

(height)?  Provide an interpretation of the coefficients. 

Answer:   

The regression implies that, for every extra inch of height, an individual tends to weigh an 

extra 5.56 pounds.   

Note the negative value of the intercept. This would suggest that an individual with no height 

would weigh –221 lbs (pounds). Of course this has no meaning and raises an important issue: 

if you don‟t have observations close at both sides of the ordinates (no X negative) or even no 

X close to 0, then you may find no reasonable intercepts. 

Accuracy of least squares: 

Remember in the simple linear regression model:  

 

 

 

 
   

 
22

2 2
,  where  

i i

x i

x

X X Y Y
b s x x

s

  
  




 

 Yi = 1 + 2 
.
 Xi + ui 
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With the last formulae we may see how the precision of estimator for 
2̂  (its variance) varies 

with the variances of the errors and of the Xs (called systematic variance in the figure below). 

In the Figure presented in next page there are four possible cases. Note that for a good fit not 

only a small variance of the errors is needed but also large variation in the regressors. It is 

basically case 2 where the variance of the errors is low and the systematic variance is high. In 

the diagrams below, this corresponds to the lower left hand side figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

cov( , )

( )

X Y
b

Var X


 

0 

10 

20 

30 

0 10 20 30 

X 

Y
 

Y vs. X 

small error variance and 

large systematic variance 

2

2( )
( )

uVar b
Var X




  

0   

10   

20   

30   

0   10   20   30   

X   

Y   

Y vs. X   

large error variance and   
small systematic variance   

  

0   

10   

20   

30   

0   10   20   30   

X   

Y   

Y vs. X   

small error variance and   
small systematic variance   

  

0   

10   

20   

30   

0   10   20   30   

X   

Y   

Y vs. X   

large error variance and   
large systematic variance   
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The standard deviation of x in the right diagrams is 3 times as large as in the left ones, and the 

standard deviation of the error terms in the lower diagrams is 3 times as large as in the upper 

ones. 

 

 

Exercise 5. Estimates for changing units of measurement 

a) Consider what slope coefficient would have been in Exercise 4 if weight had been 

measured in grams. Consider what changes would have occurred to the original slope 

coefficient if height were measured in metric units, i.e. cm.   

b) Confirm these conclusions by creating the new variables in R and comparing the 

estimated parameters. What happens with the slope? (Note: one pound is 454 grams, 

and one inch is 2.54 cm.) 

Answer: 

a) Let the weight and height be W and H in imperial units and WM and HM in metric units.  

Then WM = 454W and HM = 2.54H. 

)(

),(
2

HVar

WHCov
b   

Remember:

    
          ),cov(),cov(

),cov(

)()()(

YXYXEYXEYX

YXEYX

YEZEYZandYEIf

YXYX

YX

YY













 

We apply this property two lines below. The slope coefficient for the regression with weight 

measured in grams, 
Gb
2

, is given by 

 
22

)(

),(
454

)(

)454,(

)(

),(
b

HVar

WHCov

HVar

WHCov

HVar

WMHCov
bG   

The slope coefficient for the regression with height measured in centimeters, 
CM

1̂ , is given 

by 

222

54.2

1

)(54.2

),(54.2

)54.2(

),54.2(

)(

),(
b

HVar

WHCov

HVar

WHCov

HMVar

WHMCov
bCM 









  

In other words, if we change scale in the Y, multiplying it by a factor κ, then the estimate for 

the slope will also be multiplied κ. On the other hand, if we change scale in the X, multiplying 

it by a factor γ, then the estimate for the slope will be divided by γ. 

b) 

eaef$weight_grams <- eaef$weight*454 

eaef$height_metric <- eaef$height * 2.54 

lm(weight_grams ~ height, data=eaef) 
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5.562*454 # =2525.148 

lm(weight ~ height_metric, data=eaef) 

5.562496/2.54 # =2.189959 

 

 

Exercise 6. Multiple linear regression 

Use hprice1.csv and familiarize yourself with the dataset to estimate the model 

price = β0 + β1 
.
 sqrft +  β2 

.
 bdrms + u 

where price is the house price measured in thousands of dollars. 

a) Write out the results. What is the estimated increase in price for a house with one more 

bedroom, holding square footage constant? 

b) What is the estimated increase in price for a house with an additional bedroom that is 

140 square feet in size?  

c) What percentage of the variation in price is explained by square footage and number 

of bedrooms? 

d) The first house in the sample has sqrft = 2,438 and bedrms = 4. Find the predicted 

selling price for this house from the OLS regression line. 

e) The actual selling price of the first house in the sample was $300.000 (price=300). 

Find the residual for this house. Does it suggest that the buyer underpaid or overpaid 

for the house? 

Answer: 

a) price = -19.32 + 0.128  
.
 sqrft + 15.20  

.
 bdrms + u 

The estimated increase in price, given square feet size is 0, β2= 15.20. Note that it is 

insignificant, so the increase in price due to an increase in 1 bedroom is not statistically 

different from zero.  

b) Now the increase in price is higher because the house is larger. 

92.17)140(128.0 price , (or: $17.920) 

c) That‟s equal to the R
2
, 63.2%.  

d) The predicted price is –19.32 + .128(2,438) + 0(4) = 292.74, or $292,740. 

e) If the actual selling price was $300,000, the buyer overpaid by some margin. But, of 

course, there are many other features of a house (unobserved by us) that affect price, and 

we have not controlled for these. 

 

Exercise 7. Confidence intervals for regression coefficients (1) 

Use oilprice1.csv. This is an example that can be found expanded in the very good book by 

Murray (2006). It has to do with a trial, where the judge has to decide if the price differential 

charged to oil suppliers to a pipe because of differences in the quality of oil is fair. The quality 

is measured in API degrees (higher with greater quality). Up to the trial the implicit premise 

of the rule applied by the carriers is $0.15 per API degree of oil. The challengers want a price 

of about 3 and 5 cents. In this data set you have information on the crude oil‟s quality and 

price per barrel. 
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a) Observe by a scatter-plot if quality has any impact on prices. 

b) Use regression analysis to quantify this relationship. 

c) Construct a 95% confidence interval for how much the price of barrel changes when 

API increases in one degree. 

d) Is the price charged fair?  

e) Perform the same tests in cents. For this create a new variable multiplying the price by 

100. Does the fit of the regression change? What happens to the coefficients 

estimated? 

Answers: 

a)  

 str() 

 plot(price ~ api, data=oilprice1)  # there‟s a strong relationship 

b) 

 lm7 <- lm(price ~ api, data= oilprice1) 

 summary(lm7) 

c)  
     95.0

975.0222975.022
 tbsebtbsebP   

Lookup 0.975-quantile of t-distribution with n-2 degrees of freedom:  

 qt(p=0.975, df=13-2) # = 2.201 

0.09493 - 0.00827*2.201 
2

 0.09493 + 0.00827*2.201 

0.08 
2

 0.11 

d) The results in the last part indicate that the price that the market pays is statistically 

within the interval 9 cents and 11 cents per API degree, more would be unfair. The price 

suggested by the challenger is too low. 

e) This is another example of Exercise 5. The only change is in the scale of the results. R
2
 

does not change. 

 

 

Exercise 8. Reversal of regressor and regressand 

Load eaef.csv. The theory indicates that earnings are determined by schooling. Two 

individuals model this problem. The first individual does it correctly and obtains the 

following result: 

 ˆ 12.6 2.37earnings schooling     

The second individual, instead, first regresses schooling on EARNINGS, obtaining the 

following result: 

 ˆ 12.24 0.073schooling earnings    

From this result the second individual derives 

073.0

)24.12( schooling
earnings


  

and concludes:        ˆ 167.7 13.7earnings schooling     
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a) Explain why this equation is different from that fitted by the first individual. Is only one of 

them correct? b) Under which circumstances would both individuals get the same results? 

Answer:   

a) The slope coefficient for any estimation is equal to Cov(Y,X)/Var(X).  

The first individual calculated the slope coefficient as Cov(earnings, 

schooling)/Var(schooling).  This is what this exercise was asking.  

The slope in the second strategy corresponds to: Cov(earnings, schooling)/Var(earnings). The 

second applicant, then, revises the equation, and in an attempt to estimate the parameter in the 

model recommended by theory uses the inverse of this to estimate the parameter on schooling 

in the original model. Therefore, she is effectively using the expression 

Var(earnings)/Cov(earnings, schooling).  Obviously the two individuals are using different 

estimators and therefore in general will obtain different results. 

b) The estimates in fact turn out to be identical when  

 
Cov( , ) Var( )

Var( ) Cov( , )

earnings schooling earnings

schooling earnings schooling
 , 

which is  

 
 

2
Cov( , )

1
Var( )Var( )

earnings schooling

schooling earnings
 , 

In other words, both strategies produce the same results only when the correlation coefficient 

is equal to plus or minus one. 

 

 

Exercise 9. Regression against a constant (optional) 

What happens if we only include the constant as a regressor? a) Examine this by estimating a 

model for weight using eaef. b) Demonstrate algebraically. 

Answer: 

a)  

 lm(weight ~ 1, data=eaef) 

 summary(eaef$weight) 

b)  

The model that we‟re estimating is: 
ii

uY 
1

  

We need to calculate the corresponding sum of square errors and then minimize them. First, 

then, we calculate the errors:  

Let the fitted model be: 
1

ˆ
iY b  

Then ei, the error in observation i, is given by 

 
1

ˆ
i i i ie Y Y Y b     

and the sum of square errors, or residual sum of squares (RSS), is given by 




n

i
i

eRSS
1

2  
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2 2 2

1 1 1

1 1

2 2 2 2

1 1 1 1

1 1 1 1

( ) ( 2 )

( 2 ) 2

n n

i i i

i i

n n n n

i i i i

i i i i

RSS Y b Y bY b

Y bY nb Y b Y nb

 

   

    

      

 

   

 

The first-order condition for a minimum is: 

022
1

1

1




bnY
db

dRSS n

i
i

 

Hence:   Y
n

Y
b

ni

i
i








1

1

 

The second derivative of RSS, 2n, is positive, confirming that we have found a minimum. 

In sum, if Y is a random variable with unknown population mean 1 , we have shown that the 

sample mean of Y is equal the least squares estimator (and, therefore, the BLUE estimator) of 

b1 in the model 
ii

uY 
1

 . 

 

 

Exercise 10. Confidence intervals for regression coefficients (2) 

A researcher hypothesizes that years of schooling, may be related to the number of siblings 

(brothers and sisters), according to the relationship 

schooling = 1 +  siblings + u 

She tests the null hypothesis H0:  2 = 0 against the alternative hypothesis H1:  2   0 at the 5 

percent and 1 percent levels. Assume she has 60 individuals. What should she report? (Note: 

this exercise may be repeated at home with real data using eaef.csv). 

1. if b 2 = –0.20, s.e.(b 2) = 0.07? 

2. if b 2 = –0.12, s.e.(b 2) = 0.07? 

3. if b 2 = 0.06, s.e.(b 2) = 0.07? 

4. if b 2 = 0.20, s.e.(b 2) = 0.07? 

Answer:   

There are 58 degrees of freedom, and hence the critical values of t at the 5 percent and 1 

percent levels are 2.001 and 2.663 respectively. 

 qt(p=0.025, df=60-2, lower.tail=F) 

 qt(p=0.05, df=60-2, lower.tail=F) 

1. The t statistic is -2.86. Reject H0 at the 1 percent level. 

2. t = –1.71. Do not reject at the 5 percent level. 

3. t = 0.86. Do not reject at the 5 percent level. 

4. t = 2.86. Reject H0 at the 1 percent level. 
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Recommendations on good practice in R programming 

In the first session we went through the menu bar in the R Commander in order for you to feel 

comfortable that any time you are lost you can find the command that you‟re looking for up 

there. This is not the most common practice in R, it is too slow. Today we review important 

concepts of a good programming practice in R. The key message is that we should always be 

able to repeat exactly all the steps that we are doing whenever is necessary in the future. 

Imagine that you produce a report in which you had certain datasets as your source, you 

deleted some observations, made some calculations, went wrong somewhere then did 

something else and arrived at your final results. Would you rely on your memory to reproduce 

this a month later when a referee (or an editor or an examiner or a client) asks you for details?  

And, pedestrian, but… in three months time, will you be able to reproduce all the work that 

you have done when you have to present your analysis for MPO1? Hence the need for a good 

method of keeping your work so that you can trace back all the steps. 

 

The most basic rule:  

Be prepared to repeat all steps of your work at any time in the future. 

 

 

Rule 1. Every project will have its own folder 

In this one we‟ll save the original data source (which we will never 

modify), and the rest of the files that we will be creating with this one, 

with our instructions and with the output that we will be creating. 

 

Exercise 1. Change directory 

Change directory: 

 setwd(“projectpath”) 

R looks for files in the directory that was given by default. Usually C:/Programme/R/R-

2.10.1/bin/. You may not want this. If you‟re working on a project you may want to refer to it 

at the beginning so that you may save and load files without mentioning the whole path. 

setwd() is used for this purpose. It changes the path defined as default. 

 

 

Rule 2. Always add good documentation to your script-files 

Explain as much as you can every time that you have to deal with a complex task. All 

annotation that may be useful later when you come back to this piece of work should be 

included. This could be extended to labeling correctly variables and data when necessary.  

You can add documentation to your script-file by adding “comments” to yourself. This can be 

done in several ways. We use # to open a comment. This line then will not be read as a 

command.  

 

Exercise 2. Comments 

Try first: 

 # this is a comment 
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To add longer comments you can then try:  

 if(2==3){ Comment #1 

  This 

  is 

  a 

  comment. 

} 

 

 

Rule 3. A clear format for your programs: copy and paste the following every time you 

create a script-file. (then edit it as appropriate)   

 

Exercise 3a. THE HEADING. Start a Script-file as follows: 

 setwd("project folder") 

# --------------------------------------------------------------------------------------------------------------- 

# This Script-file does the following:  

# Inputs:     fill in  

# Outputs:  fill in 

# 

# Created by:               (you)       Date: 

# 

 

 

Exercise 3b. THE TEXT-BODY. Complete your Script-file as follows: 

Whenever tasks are complex it is useful to include Sub-headings by adding 

# --------------------------------------------------------------------------------------------------------------- 

# 

#  Step 1: summary statistics  

# 

….. 

# --------------------------------------------------------------------------------------------------------------- 

# 

#  Step 2: regression analysis 

# 

And so on. 

 

 

Exercise 3c. Save this as a Script-file session2.R in your folder 

In practice this would be the folder that you defined for your specific project: 

 File\Save as… session2.R 
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Rule 4. Never write very long scrip-files 

It is difficult to follow what you‟re doing if you write a script-file over several pages. If you 

have a long task it is better to split the task up in several script-files. A good recommendation 

is to do it in the following way. You‟ll have three kinds of script-files:  

Those needed for creating the database, those needed for analyzing it, and a master script-

file, which will provide the ordering in which the other script-files will run.  

Example: you want to study income per household according to household characteristics. It 

may be a long task which you split up into: creating new variables with characteristics for 

children; creating new variables with characteristics for parents; creating new variables with 

household characteristics; analyzing the income distribution; analyzing household 

characteristics; a master script-file sequencing the order of the others.  

They will be: 

 cr_parentschar 

 cr_childrenchar 

 cr_hhincomes 

 an_incomedis 

 an_hhchar 

 master 

Here is a rule I learnt in a course given by R to name these files. By sticking to it I saved 

many problems. The order is important in those script-files named with prefix cr_, as you may 

create a variable in cr_parentschar that will be needed in cr_childrenchar (for example if you 

create a variable with age-bands for all individuals). It is not important in those files with 

prefix an_. That doesn‟t mean that they will not generate variables. But these variables should 

not be passed further on. That is no an_-file should depend on variables created by another 

an_-file. 

This is how master script-files may appear: 

# ------------------------------------------------------------------------------- 

# Master Script-file 

# ------------------------------------------------------------------------------- 

 

source(“cr_parentschar”) 

source(“cr_childrenchar”) 

source(“cr_hhincomes”) 

source(“an_incomedis”) 

source(“an_hhchar”) 

It will be called master.R, and you may just run all the script-files in sequence by the 

command: 

 source(“master.R”) 

 

 

Rule 5. The original data-files are sacred. Do not over-write or save over them!! 

You should keep them always safe from being overwritten once you load them. You‟ll need 

to be able to go back to them any time you need to. In case you managed to overwrite your 

script-file, have a look at the folder C:/Programmes/R/R-2.10.1/bin. R keeps you a log-file 

called .Rhistory that contains all comments ever sent to the console for sessions that were 
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saved with q(“yes”) when leaving R. Every time you save the current workspace by typing 

q(“yes”) to exit R, the file gets appended. 

 

 

Rule 6. Keep track of all your changes. 

I recommend you to avoid using edit() command. You may do the same with commands in 

the command line and you will have the record of what you‟ve done.  

 

 

Rule 7. Don’t include experiments in your script-file. 

Do any experimentation by giving instructions interactively, from the command line, and only 

include the successful commands in the script-file. Otherwise, interesting output will be 

mixed with useless output. 

Of course you may, on occasions, want to be a sinner and work quick and dirty. That‟s human 

nature, but try to stick to the rules whenever you feel what you do is important. 

 

 

Rule 8. Try to keep a neat environment in your folders.  

It helps, for instance, to give similar names to your files across projects, like the 

recommendation given in rule 5 in order to manage your script-files. For the original source 

datasets I usually give names starting with base: basecompanies, baseincomes.  You may want 

to develop your own convention. It is really useful when you start with several sources and 

you finish with several outputs. Usually, there also are lots of files that may be transitorily 

created by your script-file and which you don‟t need to keep as an output.  

These should be erased, so that the folder doesn‟t get messy because of these. However, you 

may want to leave them in the first tries of your script-file in order to check that every step 

runs fine. When you‟re happy that the program is ok, you may decide to erase in order to 

finish with a neat folder. 

 

 

Books employed in this session: 

 Dougherty, Christopher (2002). Introduction to Econometrics. Oxford University 

Press. 

 Murray, Michael (2006), Econometrics, A Modern Introduction. Pearson. 

 STATA Manuals 

 Wooldridge, Jeffrey (2000), Introductory Econometrics. A Modern Approach. 

Thomson-South Western. 
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