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Exercise 1. Multicollinearity; Omitted Variable Bias 

Create y, z, x1, x2 and x3, generated as follows. Let n=10000, let , , ,i i i i    ~ N(0,1) be 

independent random variables with standard normal distribution, i=1, …, n. Define: 
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Then, see Exercise 4 in Lab Session 3,    1 2 1Var x Var x  ;
1, 2 0.958X X  ;

2, 3 0X X  . 

a) Create a sample of 10000 observations and generate the variables. 

b) Regress y on a constant, x1 and x2. Comment on the outcome. 

c) Regress z on a constant, x2 and x3. Comment on the outcome. 

d) Regress y on a constant and x1, compare this with the regression of y on a 

constant, x1 and x2. Regress z on a constant and x2, compare this with the 

regression of z on a constant, x2 and x3. 

Help: 

To create variables with a standard normal distribution: 

 varname <- qnorm(runif (n=1000, min=0, max=1))  

or simply:  

 rnorm(n=1000, mean=1, sd=1) 

a) 

epsilon <- rnorm(1000) 

omega <- rnorm(1000) 

eta <- rnorm(1000) 

zeta <- rnorm(1000) 
 

x1 <- 5 + omega + 0.3* eta 

x2 <- 10 + omega 

x3 <- 5 + eta 

y <- 20+ x1 + x2 + epsilon 

z <- 30+ x2 + x3 + zeta 
 

cor(cbind(x1, x2, x3)) 

b) 

 lm1b <- lm(y ~ x1 + x2) robust? 

 vif(lm1b) 

Note all estimators are very close to the population values. This is what we would have 

expected, as they are unbiased, when no relevant variables are omitted (there is no correlation 

between either x1 or x2 and epsilon). In this case, however, they’re not spot on, though. Why 

would this be? The problem is one of multicollinearity, as both regressors are highly 

correlated. The impact that this problem has on the estimated coefficients is not to bias them, 

but to increase their variance, thus increasing the range of the confidence interval. This is the 

only reason why the parameters are not as close to 1 as in part c, below. 
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Variance Inflation Factor (VIF) 

Under Gauss-Markov assumptions, the variance of the OLS estimator for a typical 

regression coefficient can be shown to be the following  

 

 

 

where Ri is the unadjusted R
2
 when you regress Xi against all the other explanatory variables 

in the model, that is, against a constant, X2, …., Xi-1, Xi+1, ., Xk.  

If there is no linear relation between Xi and the other explanatory variables in the model, Ri 

will be zero. Obviously, the diagnostic used for multicollinearity is related to Ri 

 

 

The VIF shows us how much the variance of the coefficient estimate is being inflated by 

multicollinearity. The bigger 
2

iR  is (i.e. the more highly correlated Xj is with the other 

regressors in the model), the bigger the standard error will be. Indeed, if X i is perfectly 

correlated with the other regressors  12 iR , the standard error will equal infinity. This is 

referred to as the problem of perfect multicollinearity.  

As the Xs become more highly correlated, it becomes more and more difficult to determine 

which X is actually producing the effect on Y. A 
2

iR close to 0 means there is little 

multicollinearity, whereas higher values suggest that multicollinearity may be a threat. The 

square root of the VIF tells you how much larger the standard error is, compared with what it 

would be if that variable were uncorrelated with the other X variables in the equation. For 

example, if VIF for a variable were 9, its standard error would be three times as large as it 

would be if its VIF was 1. In such a case, the coefficient would have to be 3 times as large to 

be statistically significant. VIF-statistic ranges from 1.0 to infinity. VIFs greater than 10.0 for 

any variable are generally seen as indicative of severe multicolinearity.  

In this case, the value for VIF is very high, confirming what we observed in the correlation 

matrix above.  

c) 

 lm1c <- lm(z ~ x2 + x3) 

Note all estimators are spot on. 

d) 

lm(y ~ x1) 

lm(y ~ x1 + x2) 

lm(z ~ x2) 

lm(z ~ x2 + x3) 

We observe then that, while in the first regression with y, the estimator 2b  is biased (the bias 

being equal to 
 1 2

2

1

cov ,

( )

X X

Var X
  =1)

1
, in the first regression with z the estimator 2b  is unbiased 

because 
 2 3

2

cov ,
0.

( )

X X

Var X
  The constant in the first regression with z is biased, though. Why? 

                                                
1 This is a formulae for the bias presented in Wooldridge, equivalent to the one given in class for large samples, 

therefore the magnitude of the inconsistency, in the case when u = 2 X2. 
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Note that according to the true model 
32

30 xxz  , but we are not including x3, so the 

constant in the new model is equal to 
2

xz  , which is actually equal to 3530
3
 x . The 

same or worse occurs with the first model with y. Now, not only is there an omitted variable 

bias for b2, but the estimated constant is also biased. 

 

 

Exercise 2. Multicollinearity; Variance Inflation Factor 
 

Use salary.txt to estimate log(salary) on education, starting salary (in logs), gender and if the 

individual is member of a minority. Use an indicator to assess the problem of 

multicollinearity. 

Remember: 

 
 kj

RXVarn
bVar

j

j ,...,3,2,
1)(

)(
2

2







 

Then, the correlation between the regressors, assessed by 2

jR , is used to assess how much this 

correlation inflates the variance of the estimator bj. 1/  21 jR  are the variance inflation 

factors. 

Answer: 

 salary <- read.table(“salary.txt”, header=T, sep=”  ”) 

1
st
 question: Is n big? 

 str(salary) 

n=474, therefore it is big. You can use robust standard errors. 

 lm2 <- lm(LOGSAL ~ EDUC + LOGSALBEGIN + GENDER + MINORITY, 

data=salary) 

 vif(lm2) # remember: library(car) 

None of the variables’ vif is higher than 10, so no problem identified this way.  

In order to confirm vif results above, I calculate them without the built in command in the 

following part of the solution. It may be also useful if you wanted to apply similar methods to 

compute other statistics. 

 lm2ed <- lm(EDUC ~ LOGSALBEGIN + GENDER + MINORITY, data=salary) 

After each regression R keeps several of the statistics calculated for further use. You can see 

which statistics are kept by typing str(lm2) and summary(lm2) and scrolling down to the list of 

saved results. 

print( paste( "The R2 is",  summary(lm2ed)$r.squared ) ) 

print( paste( "variance inflation factor is",  1/(1- summary(lm2ed)$r.squared) ) ) 

The VIFs estimated for each regressor are not that big. We calculate the 2

jR  (0.47, 0.33, and 

0.07, 0.59). To calculate the impact on the standard deviation of the estimators we calculate 

vif:  

 21

1

j
R

vif




 

The highest result is 2.45 (for logsalbegin), which doesn’t seem to be so serious. Several 

present results which are over 1.5, so we want to do another test as well. 
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 attach(salary) 

 cor(cbind(EDUC, LOGSALBEGIN, GENDER, MINORITY)) 

 detach(salary) 

logsalbegin and educ are quite highly correlated (very close to .7, which could be the limit of 

the ‘red zone’; being worryingly high over, say, 0.6). Could we drop any of these variables or 

combine them somehow? Probably not, so we may just leave the model as it stands. 

Especially so, considering that with this issue not much can be done. 

 

 

Exercise 3. The effects of having highly correlated regressors 

Use eaef21.csv. 

 eaef21 <- read.csv("eaef21.csv", header=T)  

SM and SF represent years of schooling corresponding to each of the individuals’ parents. 

a) Investigate the determinants of family size by regressing SIBLINGS on SM and SF for 

different ethnic groups. SM and SF are likely to be highly correlated (find the correlation in 

your data set) and the regression may be subject to multicollinearity. Check this.  

b) Run a regression of SIBLINGS on SM and SF for the whole sample. Test and if possible 

introduce the restriction that the theoretical coefficients of SM and SF are equal. Run the 

regression a second time, replacing SM and SF by their sum, SP.  Evaluate the regression 

results. Do you think proceeding like this would improve in any sense the estimations? 

First we ask ourselves whether we have big samples for all ethnic groups. 

sum( ifelse(eaef21$ETHWHITE==1, 1, 0)) 

sum(eaef21$ETHBLACK) 

sum(eaef21$ETHHISP) 

The samples for the white and black ethnic groups are reasonably big. We can thus use robust 

standard errors for regressions with these two samples. The sample size for the Hispanic 

ethnic category is 33, which is perhaps too small to allow us to use robust standard errors. 

a)  

lm3w <- lm(SIBLINGS ~ SM + SF, data=eaef21[eaef21$ETHWHITE==1, ]) 

cor( cbind(eaef21$SM, eaef21$SF)[eaef21$ETHWHITE==1, ] ) 

vif(lm3w) 
 

lm3b <- lm( SIBLINGS ~ SM + SF, data=subset(eaef21, ETHBLACK ==1) ) 

cor( subset(eaef21, ETHBLACK ==1, select=c(SM, SF)) ) 

vif(lm3b) 
 

lm3h <- lm( SIBLINGS ~ SM + SF, data= subset(eaef21, ETHHISP==1) ) 

cor( subset(eaef21, ETHHISP ==1, select=c(SM, SF)) ) 

vif(lm3h) 

Clearly the greater the education of the parents, the smaller the number of children in the 

household. The opportunity cost of dedicating more human capital away from obtaining 

incomes may be a good reason. Similarly, it could explain women’s behaviour regarding 

fertility, as they tend to have their first children later in life in order to be able to invest in 

education. 

SF and SM are quite highly correlated for all groups, though the variance inflation factors are 

not very big. 
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SF is always non-significant. As we include SM as well it is possible that this variable is 

capturing family background and so in this case there is the classic ambiguity caused by 

multicollinearity. It is possible that father's education has no effect on family size. While we 

expect that it actually does, the correlation between SM and SF, being 0.58 or higher, 

combined with a relatively small sample size (for this kind of work) conspire to make the 

standard error so large that the coefficient is insignificant in all cases. 

b) The model is: 

uSFSMSiblings  210   

 lm3.1 <- lm(SIBLINGS ~ SM + SF, data=eaef21) 

The test of hypothesis could be equal to: 
21

:  Ho  

 linearHypothesis(model=lm3.1, “SM=SF”) 

the restriction is not rejected at 5%, so the model could be estimated as follows: 

  uSFSMuSFSMSiblings  10210   

(Remember that by imposing restrictions which are not rejected we produce more efficient 

estimators). 

 eaef21$SP <- eaef21$SF + eaef21$SM 

 lm3.2 <- lm(SIBLINGS ~ SP, data=eaef21) 

The new estimation is between both previous coefficient estimations, and the standard 

deviation of the new estimator is smaller than any of the previous estimators. We have dealt 

with the issue of multicollinearity. 

 

 

Exercise 4. OLS assumptions; dummy variables (optional) 

What are the main assumptions underlying the classical linear regression model. What  

do they mean? Do this in your own time if you wish. 

Answer: There are 5 main assumptions: 

1) E(εi) = 0 – The errors have zero mean. 

2) Var(εi) = σ
2
<∞ – The variance of the errors is constant and finite over all   

 values of xi. This is the homoscedasticity assumption. 

3) Cov(εi, εj) = 0 – The errors are statistically independent of one another. This  

 is the no autocorrelation assumption.  

4) Cov(εi, xi) = 0 – There is no relationship between the error and the  

 corresponding x. 

5) εi ~ N(0, σ
2
) – The errors are normally distributed. This is the normality  

 assumption 

 

Dummy variables (optional) 

Yet another possible problem related to the ceteris paribus assumption can motivate the 

discussion of the use dummy variables. This one arises when we define  

iiii uDDY  2312  , 

when iD1  and iD2 are dummy variables collecting two mutually exclusive or disjoint states 

(those defined as ‘the result of the state is either one or the other’), which, together define all 
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possible situations. For instance the D1 is the first half of the year and D2 the second half of 

the year, and of course for any individual we cannot change the value of variable D1 (say for 1 

to 0) without changing the value of variable D2. 

This is an important reason to do the following transformation to this model. We know that 

D1i + D2i = 1. Then, D1i = 1 – D2i, and so the model above is changed into 

  iiii uDDY  2322 1  which is the same, after operating to run: 

  iii uDY  2232   

It is evident that when you include all dummies except for one, the constant collects the effect 

corresponding to the default state and the included dummies collect the effect due to the 

dummy wise specified state as an increment on the constant. In our example, 2  collects the 

effect of the first half of the year and  23    what the second half of the year adds to the 

first. 

Note that you can do the same with the slopes, i.e., not only with the constant but with all 

other independent variables as well. Example: consider the model:  

iii uXY  121  . 

Is 2 different for the second half of the year? The new model would be:  

iiiiii uXDXDY  1231121  .
2
 

In this case, as we did previously, we know that D1i + D2i = 1. Then, D1i = 1 – D2i, and the 

model is changed into:   iiiiii uXDXDY  1231221 1  , or equivalently 

  iiiii uXDXY  1223121  . 

As before, we just include one of the 2 dummies, which collect the additional effect of the 

second half of the year now on the coefficient of X1.  

Variable transformations which consist of multiplying a regressor by a dummy variable, as 

above, are called interaction terms. 

 

 

Exercise 5. Bank wages 

bank.csv includes information on salaries in a US bank. Describe and summarize to see the 

contents. 

 bank <- read.csv("bank LS4.csv", header=T) 

  str(bank) 

i) Regress the log of salaries on a constant, education, the log of the starting salary, 

and define a way to capture percentage differences due to gender and belonging to 

a minority. 

ii) Create a dummy variable for each job category and estimate a model to observe 

effects generated by these job-categories. Is there a significant difference in 

income between the job categories?  

                                                
2 Note that if the observation is in the first semester D1i=1 but D2i =0 so the model becomes: 

iiii uXDY  1121  . And it’s the other way around in the second semester. 
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iii) Estimate the same model for those employees with custodial jobs (jobcat=2) and 

for those with managerial jobs (jobcat=3). Why do you think that some variables 

are dropped? (Hint: do: sum(bank$male[bank$jobcat==2]) 

iv) Are there significant differences between minority and non-minority employees? 

By gender? Is there any variation due to being simultaneously female and also 

minority?  

v) Test for the joint significance of gender and if they are part of minorities. What’s 

the effect of imposing these restrictions? 

vi) Test the hypothesis of the returns to education being = 7%. Then test this 

hypothesis jointly which the hypothesis of female and minority having the same 

discriminatory effect. 

vii) salbegin is the salary received by the individual when starting his position at the 

same bank. Test whether the log of salary when beginning has a significantly 

different effect for managerial jobs. What does this mean? 

i) First of all we check whether we have a big or a small sample. It’s big, so we use robust 

standard errors. 

First things first. They ask us to work with males and log(salary). They give us these 

variables already. Note that differences of variables in log multiplied by 100 are used to 

estimate percentage increments, if these are low. In this exercise we estimate: 

ii

iii

uority

malesalbegineducationsalary





min.

.log..)log(

4

3210



  

 logsalbegin <- log(salbegin) 

 lm5i <- lm(logsal ~ educ + logsalbegin + male + minority, data=bank) 

Then given all the rest of the characteristics, the difference between two typical 

individuals, a female and a male would be given by 3 , which indicates how much more 

(if negative, less) men earn than women – the results suggest that males earn 8% more on 

average. Likewise, 4  indicates differences against (if negative) of minorities – minorities 

appear to earn 8% less. 

ii) There are two ways to generate dummy variables in R:  

1. with command ifelse 

 bank$jobcat.cler <- ifelse(bank$jobcat==1, 1, 0) 

 bank$jobcat.cust <- ifelse(bank$jobcat==2, 1, 0) 

 bank$jobcat.man <- ifelse(bank$jobcat==3, 1, 0) 

 lm(logsal ~ educ + male + minority + jobcat.cler + jobcat.cust, data=bank) 

This command creates a variable per category. You should use information about which 

category corresponds to which variable, e.g. 1="clerical", 2="custodial", 3="managerial". 

Remember to leave one category aside!! 

2. with command factor 

 bank$jobcat.fac <- factor(bank$jobcat) 

 levels(bank$jobcat.fac) <- c("Clerical", "Custodial", "Managerial") 

 lm(logsal ~ educ + male + minority + jobcat.fac, data=bank) 

This command creates a variable per category and includes them in the regression. As 

before, it’s up to you to check which category corresponds to which variable. 

There are significant differences between both categories explicitly included with 

variables and the third category, which acts as default (t-values higher than 1.96).  
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 linearHypothesis(model=lm5iia, "jobcat.cler = jobcat.cust", vcov=hccm) 

There are also differences between the two included as we reject the null of both 

coefficients being equal. Note that since we estimated with robust, this test calculates the 

heteroscedastic-robust F-statistic which, for big samples, tends to be distributed as 2

1 . 

iii) 

 table(bank$jobcat) 

We observe that category custodial (2) does not represent a large subsample. The 

inferences regarding this category should rely on the disturbances being homoscedastic 

and normally distributed (assumptions which we will learn how to test soon). 

lm(logsal ~ educ + male + minority, data=subset(bank, jobcat==2) ) 

lm(logsal ~ educ + male + minority, data=subset(bank, jobcat==3) ) 

sum(bank$male[bank$jobcat==2]) 

No females do custodial jobs. So male should not have been included. This does not 

happen with managerial jobs. 

iv)  

Yes and yes. The null hypotheses of the coefficients being zero are rejected. To capture 

specific differences for female pertaining to the minority we do 

bank$female <- ifelse(bank$male==0, 1, 0) 

bank$femaleandminority <- bank$female * bank$minority 

lm5iv <- lm(logsal ~ educ + male + minority + femaleandminority, data=bank) 

As we can see, there is a special negative effect (discrimination) this group seems subject 

to. 

v) 

 linearHypothesis(model=lm5iv, "male = minority") 

We want to know if at least one is statistically different from 0. (We knew it already, I 

know). 

vi) 

lm5vi <- lm(logsal ~ educ + female + minority , data=bank) 

linearHypothesis(lm5vi, "educ = 0.07") 

It is not rejected. 

 linearHypothesis(lm5vi, c("educ = 0.07", "female = minority")) 

 
femaleorityeduc

femaleorityeduc

oreitherHa

andHo









min

min

0:

07.0:
 

The null of these hypotheses is rejected, the effect is statistically higher for female, and 

that’s the reason to reject that both hypotheses apply, despite the fact that on its own, the 

first hypothesis is not rejected. 

vii) 

 lm(logsal ~ educ + female + minority + logsalbegin + logsalbegin:jobcat.man, 

data=bank) 

logsalbegin is significant indicating the importance of negotiating a good salary when starting. 

The interaction term with the managerial category is significant indicating a different in the 
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slope for this category when compared with the rest of the categories. This means that for 

managers, an initial salary being 10% higher corresponds to a 0.19% higher current salary, 

compared to non-managers (a low impact, significant, yes, but low). 

 

 

Exercise 6. NO2 pollution 

Nitrogen dioxide (NO2) is a pollutant that attacks the human respiratory system and increases  

the likelihood of respiratory illness. One common source of nitrogen dioxide is automobile  

exhaust. File NO2pollution.csv contains a subset of 500 hourly observations made from   

October 2001 to August 2003. Variables are: 

LNO2    : ln(concentration of NO2) 

lcars     : ln(number of cars per hour) 

temp    : temperature 2 meters above ground 

wndspd    : wind speed 

tchng23    : temperature difference between 25 and 2 meters above ground. 

WNDDIR: wind direction 

HOUR    : hour of day 

DAYS    : day number from October 1, 2001 

a) Regress the log of NO2 concentration on the log of the number of cars, the two 

temperature variables, the two wind variables and the time index (days). Test whether 

wind speed and direction have the same impact. 

b) The sample has 500 observations. Does the validity of the F-test described in (a) rest 

heavily on having normally, or almost normally distributed disturbances? 

 no2poll <- read.csv("no2pollution.csv", header=T) 

a) The sample is big, so we run with robust. 

 lm6 <- lm(lno2 ~ lcars + temp + tchng23 + wndspd + wnddir + day, data=no2poll) 

 linearHypothesis(lm6, "wndspd = wnddir") 

We reject this hypothesis. 

b)  

Given the sample is large with n=500, the validity of the test does NOT rest heavily on having 

normally distributed variances.  

 

 

Exercise 7. Programming in R (strictly optional) 

We use the dataset employed in the first lab-session: dataset.csv. Do larger companies (those  

with higher rev) grow at a faster rate than small ones? Create a Script-file to analyse this  

question. 

a) Create a Script-file with the recommended header (see the hand out on R programming).  

b) Load dataset.csv 

c) Create a variable enumerating the companies. 

d) Sort the data considering comp_name and year. Inspect the result of your sorting. 

e) Are all observations reported for consecutive years? Or is it the case that years are 

missing in the span for some companies? 

f) Create a new variable with the rate of growth for each company defined as:  
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g) List whatever variables you need to inspect that you did this correctly. Why would this 

variable lead to problems? 

h) Create a new variable named: 

 
 





























1_

1__

1__

n

nn

nn

rev

yearyear

revrev

rectedrevgrowcor  

Include comments to remind yourself the reasons for creating this variable. 

i) Visually inspect the variables involved.  

j) Estimate the regression for the whole sample. 

k) Divide the sample in 3 sub-samples: up to 1998; up to 2001; the rest. Observe results. 

Estimate the regression for each sub-sample. 

Some help: 

c) Look up the command as.numeric in the R help. 

d) Look up the command order, in the R help. 

e) Look at company ACE Technosoft. Also, assertions are useful commands when 

programming in R to deal with these sorts of questions. If you state an assertion, R responds 

with whether this assertion is correct. In this case we’d say that for each individual the 

difference between years is 1.  

f) Here you can make use of R’s vector structure. In the next lab session, we will have a closer 

look at how to generate lagged variables to calculate first differences. 
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