Logarithmic Models

Logarithmic Models - linear-log

$$
Y_{i}=\beta_{0}+\beta_{1} \cdot \ln X_{i}+u_{i}
$$

marginal effects:

$$
\begin{aligned}
\frac{\partial Y_{i}}{\partial X_{i}} & =\beta_{1} \frac{1}{X_{i}} \\
\Delta Y_{i} & \approx \Delta X_{i} \cdot \beta_{1} \frac{1}{X_{i}}
\end{aligned}
$$

if X_{i} changes by $1 \%\left(\Delta X_{i}=0.01 \cdot X_{i}\right) \ldots$

$$
\Delta Y_{i} \approx 0.01 X_{i} \cdot \beta_{1} \frac{1}{X_{i}}
$$

... Y_{i} changes by $0.01 \cdot \beta_{1}$.

Logarithmic Models - log-linear

$$
\ln Y_{i}=\beta_{0}+\beta_{1} \cdot X_{i}+u_{i}
$$

marginal effects:

$$
\begin{aligned}
& \frac{\partial \ln Y_{i}}{\partial X_{i}}=\beta_{1} \\
& \frac{\Delta \ln Y_{i}}{\Delta X_{i}} \approx \beta_{1}
\end{aligned}
$$

and

$$
\frac{\Delta Y_{i}}{Y_{i}} \approx \Delta \ln Y_{i} \approx \beta_{1} \cdot \Delta X_{i}
$$

A change of X_{i} by one unit translates into a change of Y_{i} by the share β_{1}.

Logarithmic Models - log-log

$$
\begin{aligned}
\ln Y_{i} & =\beta_{0}+\beta_{1} \cdot \ln X_{i}+u_{i} \\
Y_{i} & =e^{\beta_{0}} \cdot X_{i}^{\beta_{1}} \cdot e^{u_{i}}
\end{aligned}
$$

marginal effects:

$$
\begin{aligned}
\frac{\partial Y_{i}}{\partial X_{i}} & =e^{\beta_{0}} \cdot \beta_{1} X_{i}^{\beta_{1}-1}=\beta_{1} \frac{Y_{i}}{X_{i}} \\
\frac{\partial Y_{i}}{\partial X_{i}} \cdot \frac{X_{i}}{Y_{i}} & =\beta_{1}
\end{aligned}
$$

β_{1} is the elasticity of Y_{i} with respect to X_{i}.

